PHYSICAL REVIEW E 66, 046117 (2002

Mean field Ehrenfest quantunyclassical simulation of vibrational energy relaxation
in a simple liquid
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We give a detailed account of the statistical mechanical properties of the mean field Ehrenfest quantum/
classical method as applied to liquid phase vibrational energy transfer using a simple harmonic oscillator model
Hamiltonian. Depending on the shape of the initial quantum wave pacKegréia) breakdown of detailed
balance is observed, where the frictional response of the classical bath is only correlated to quasiclassical
features of the evolving quantum state, i.e., a classical-like fluctuation-dissipation theorem holds. Only in the
case of a coherent initial stateninimum uncertainty wave pacKetloes the mean field method produce
physically meaningful results, namely, exponential relaxation £,) towards a quasiclassical equilibrium.
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I. INTRODUCTION maining DOF. Quantum and classical equations of motion

are solved in a self-consistent manner. Mixed quantum/

Mixed quantum/classical or semiclassical molecular dy-classical methods have the advantage that the stability of
namics methods have recently been the subject of renewdBtegration schemes allows for longer simulation times up to
and increasing interest especially in the field of condensefjundreds of picoseconds, although the shortest time step dic-
phase chemical dynami¢a—g]. Basically, this arises from tated by the time dependence of quantum probability ampli-

the fact that many important chemical processes involve thtUdes is typically significantly smaller than in a correspond-

. : . g purely classical treatment.
motion of light particles such as electrons or protons or af- “\ynen applying QCMD, one always has to keep in mind

ford the inclusion of quantum effects for some degrees ofnat these methods involve unavoidable approximations, the
freedom, while at the same time a full quantum treatment o{alidity of which must be checked for the specific physical
a many particle system is impossible. Typical examples argystem under investigation. This is usually done by bench-
electronically nonadiabatic processes such as internal comrarking against fully correlated quantum simulations for
version[9] or photodissociation in liquids and solid matrices small to moderately large systems. However, the number of
[6,10] or proton/hydrogen transfers in chemistry and biologymodel systems mimicking the effects of a condensed phase
[4,5]. Vibrational energy transfefVET, vibrational energy ~€nvironment, which can be solved exactly in a quantum
relaxation(VER)] is an elementary process of fundamentaliréatment, is limited, e.g., Ref12], and these models often

importance in chemical dynamics where quantum effect$!C NOt contain anharmonic interactions typical for a liquid
. . solution, as employed in the present study. Here we use in-
may also become important due to the non-negligible zer

Qtead the assumption that the quantum rate of energy relax-

point energy of high frequency vibrations and the discreteyion may be estimated from a knowledge of the classical

ness of their energy spectra. Moreover, since a quantum 0gste as described later.
cillator can explore classically forbidden regions of the po-  QCMD methods may be divided into two categories de-
tential energy function—this is often called dynamical pending on the level of approximation especially pertaining
tunneling[11]—, the exact quantum rate of relaxation may to the degree of correlation between quantum and classical
become larger than the rate obtained from a purely classicaubsystems. The lowest level of theory is represented by the
treatment, despite the discreteness of the quantum energp-called mean field Ehrenfe@flF) or classical path method
scale. [2,5], which can rigorously be derived from the single-
Semiclassical method$8] are usually derived from the configuration time-dependent self-consistent fieldSCPH
Feynman path integral and, at the highest level, treat all deapproximation[6,7,13,14. As a result, it suffers from the
grees of freedom on an equal footing, namely, semiclassicalame approximations as involved in the derivation of TD-
mechanics. However, at present these methods are limited ®CF, namely, the(partia) neglect of correlation between
short times below and up ter1 ps, while vibrational relax- subsystems described by separate lower-dimensional wave
ation in the condensed phase takes place on picosecond finctions. While the TDSCF and MF methods are applicable
nanosecond time scales and beyond. to situations with small coupling between subsystems or
Hybrid quantum/classical molecular dynamics, hereaftewhere the interaction between subsystems is of an average
denoted by the acronym QCMD, is distinct from semiclassi-type, mean field performs poorly for systems with large cou-
cal treatments, in that it involves the propagation of a quanpling and strong dependence of classical forces on the quan-
tum wave packet for the quantum degrees of free@@@F),  tum state[15]. In general terms, the drawback of the mean
whereas classical equations of motion are solved for the refield approach arises from the property that the motion of
classical degrees of freedom is not correlated to the full prob-
ability density or density matrix of the quantum DOF, but
*FAX: +49 (0)551/201-1006. Email address: gkaeb@gwdg.de only to an expectation value calculated there from, namely,
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an average Hellmann-Feynman-type force. By investigating the statistical mechanical properties of the
The molecular dynamics with electronic transitions mean field QCMD scheme we hope to contribute to the de-
method[16], widely known assurface hopping(SH), has  velopment of quantum/classical simulation methodology in
been specifically designed to handle this correlation problenthe context of condensed phase dissipative vibrational dy-
and represents the second class of QCMD schemes. Variofi@Mmics.
implementations of surface hopping and related approaches Our paper is organized as follows. In Sec. Il we give a
have been developed, and an extension to nonadiabatic trafiéscription of the mean field Ehrenfest method as derived
sitions between proton states, termed molecular dynamicdsom the TDSCF approximation. Section Iil describes our
with quantum transitionf4,17], has been worked out. A nice model Hamiltonian of a harmonic breathing sphere dissolved

review of SH and related developments may be found in Refin @ Lennard-Jones liquid and its parametrization as well as
[5]. the thermodynamic conditions. We also discuss the propaga-

In this work we apply QCMD to dissipative vibrational tion scheme used to integrate the coupled quantum/classical
equations of motion and its implementation. In Sec. IV we

energy transfer in solution, where we explore the perfor-

mance and statistical mechanical properties of the mean fielgPOrt and discuss our results obtained from nonequilibrium
Ehrenfest method in nonequilibrium simulations for the Simulations starting with different quantum initial states at a

simple model system of a harmonic breathing sphere in give_n mean excess vibrationgl energy. We a_lso inclu_de in this
Lennard-Jones fluid at liquid density. Our main goal is toSection some o_f the theoretical considerations which gould
investigate the effect of different quantum initial conditions, "@ve been put into Sec. Il, because they are closely tied to
i.e., coherent state vs delocalized eigenstate, on the dissiple €merging results. Section V concludes by summarizing
tive redistribution of energy between the quantum oscillatoPUr key findings.

and the classical solvent bath. While for electronically nona-

diabatic processes the region of strong nonadiabatic coupling Il. THEORY

is often well localized in position space, in vibrational relax-
ation the coupling between diabatic as well as between adiah—O
batic states is delocalized in the phase space of classical p
ticles and therefore is nonvanishing throughout the course (j ), say
a simulation. Thus, we can expect the mean field scheme g1

be a reasonably good starting point for investigations. How- W)= @1)] @2), (1)
ever, it is to be expected that detailed balance is not treated

properly[2,18] and the results obtained will depend on the and this separability is assumed to hold for all times. Inser-
shape of the evolving quantum wave packet. tion of Eq. (1) into the time-dependent Schiimger equation

The theoretical treatment of condensed phase vibration:ill]-DSE) together with a Hamiltonian of the forri=H
energy transfer has a long histdrdQ], which we shall not !

trace here in detail. If zero point energy effects may be ne
glected, a purely classical approach can be used in the co
text of equilibrium statistical mechanicg) to calculate the

mean energy relaxation time from the linear response theory

In the single-configuration TDSCF6,13,26 approxima-
n the full many-dimensional quantum state ved\y is
ritten as a product of single-particle or single-DOF vectors

+H,+H;, and multiplication from the left by(¢;| and
@,|, respectively, leads to a coupled set of one-dimensional
chralinger equations

[19,20, as well as for nonequilibrium simulations afid to in|e)=HP[e1), HY=(p,|H|¢2); 2
study in detail the dynamical evolution of energy redistribu- . . -

tion, e.g., Refs[21,27. In fact, even for high frequency ifi|e)=H?|@,), HZ=(e|H|e1); 3
oscillators the overall energy relaxation may be reasonably _

described by a classical treatment, although unphysical zero in|U)y={HY+AH®}|P), (4)

point energy loss is unavoidable. In quantum approaches to

condensed phase VER, perturbational treatments based where we have implicity assumed thap;|¢1)=(¢|¢,)
the linear response theory still dominate, where state-to-state 0, which fixes the phases pf;) and|¢,) and guarantees
transition rates may be calculated from the spectral densitthat|¢;) and|e,) remain normalized throughout the propa-
of classical force-force correlation functiond9,20,23.  gation, if normalized initially. From Eq(4) we recognize
When classical correlation functions are employed, the dethat the time evolution of the full quantum state vedtby is
tailed balance constraint must be invoked explicitly. A criti- determined by an effective Hamiltoniga® + 3@ which
cal consideration of the approximations involved in differs from the exact one. In a more rigorous derivation
quantum-oscillator/classical-bath approaches has recentjpg], the total state vector is written as

been given by Egorov, Rabani, and Bef@6] in the context

of the perturbational approach. Only recently direct nonequi- [TYy=a(t)| 1) @2), (5
librium QCMD simulations[23,24] and related treatments

[25] of VER in solution have been reported. However, wewhere the complex numbex(t) is introduced to allow for a
feel that the strengths and weaknesses as well as the statidtiee choice of phases of bolt,) and|¢,) at a fixed overall
cal mechanical consequences of direct nonequilibriunphase of|¥). The quantum equations of motion fagt),
QCMD approaches to dissipative vibrational energy transfef¢;), and |¢,) are then derived from the Dirac-Frenkel
in realistic solvent environments are still poorly understoodvariational principle/26,27],
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- d i
<6\P|{H—iﬁ5]|\1'>=o. 6) <R|¢B>EsoB(R,t)=A<R,t)exp{gS<R,t>], (14)
resulting in whereA(R,t) andS(R,t) are real functionsA?(R,t) is the
R quantum probability density in position space &(@R,t) is
iﬁa:<H>a, (7) the quantum analog of the classical action, the gradient of
which determines the momentum. If the so-called quantum
iﬁ|¢1>:{|:|<l)—<|:|>}|cpl>, (8) potential Q(R,t)z—(ﬁZ/ZM)VZRA/A is neglected in the

equation of motion foS(R,t), classical equations of motion
for R(t) andpg(t) are obtained,

ifi] o) ={H®—(A)}]2), 9
e R N - : Pr(t)
in|U)={AD+H@ — (A} WP). (10) RO ==~ =R, (15
The effective Hamiltonians for propagation of single-particle . . .
vectors|¢;) and|e,) are now given by Pr(D) =Mog(t)= = Vr(egHsel ¢s) = VeHg.  (16)

A ={A® — AV ={A1+ (A} —{(A) 1+ (A1, While Hg is now a cla§sical function of positions and mo-
(11 menta for bath particle$] sg=Hsg R(t)] is still an operator
in r space, where each matrix element is a time-dependent
A2 () ={A@ = (A)}={F,+ (A1)} —{(A2)o+ (A1) 2 function determined by the positiofgt) of bath degrees of
(120  freedom. The time evolution of the system state vepta)
is governed by the TDSE
Since the phase factors of vectofg;) determined by
{(Hi)i+(Hjj) ;} do not affect the time-dependent expecta- il es)={Hs+Hsd R(1)Hes)=H [R(D)]|es). (17)
tion values calculated frorhp;), these terms can be omitted
from the | ;) propagation, or in other words shifted to the Equations(15) through (17) are the mean field Ehrenfest
time dependence af(t). Due to the TDSCF ansatz, the full quantum/classical equations of motion for a Hamiltonian of
correlation between single-DOF densitigs= Trj{f)} is no the form specified by Eq13). The mean field Ehrenfest or
longer maintained, wher@=|W¥){(¥| is the total density classical path method may also be derived, more transpar-
operator. ently, from a quantum/semiclassical approximation within
We now formulate the Hamiltonian in a form more suit- the TDSCF ansatz using Gaussian wave padkg28).
able to our model system as well as for deriving the mean The classical path equations correspond to a rigorous

field Ehrenfest equations of motion, namely, quantum/classical limit within the TDSCF approximation for
the total wave function. Quantum and classical degrees of
N N 12 52 freedom are coupled self-consistently through the time-

H=HstHg+Hsp, Hs=— ﬂa_errUS(r)’ dependent operatoHsd R(t)] and the “quantum force”

Fd'= — Va(Hsp)s, respectively, i.e., they can exchange en-
ergy. If a diabatic basis, i.e., isolated solute energy eigen-
_mﬁ+UB(R)' functions, or some fixed discrete variable representation
(DVR) grid in position space is used for a representation of
the state vectofes), the expression for the quantum force
simplifies to

. 2 9
HB=

Hsg=V(r,R). (13

Here, the system Hamiltoniafs corresponds to the energy
of a vibrational degree of freedom denoted byThe bath

HamiltonianHg IS the sum of klnetlc_ and potentlal terms for Equation(18) is of the general form of a Hellmann-Feynman
the solvent particles, where the variaBeollectively repre- theorem[29,30]

sents the positions of all bath particléR,} including the
solute center of mass. The Sctilmger equations fofes)
and|¢g) (omitting unimportant phase factorsead

Fl'=—Va(Hsps= —(VrHsps=FR". (18)

Various integration schemes for QCMD simulations have
been described, see, e.g., R&fl]. We have chosen to use
the PICKAPACK algorithm developed by Scite and co-
workers[32,33. It has the important property of being sym-

if|ps)={Hs+(Hsps}|@s), plectic and symmetric. When studying energy transfer by
. R molecular dynamics simulation, the conservation of total en-
ifi|og)={Hg+(Hsp s} ®s)- ergy and momentum is absolutely essential. Regarding the

symplectic property, we mention that the conservation of to-
For taking the classical limit of the bath equations of motion,tal energy and momentum in mean field QCMD is only de-
|g) is written as[5] fined on the level of expectation values, but obviously does
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not hold on a quantum state-to-state level. This will become E,
important later on. ThelCKAPACK propagator consists in the N(O)=—4r = Fro., Fi=—VV(r,R). (20
following subsequent steps:

Equation(20) is written with the system/bath partitioning of

R.=R-+ Pro E Eqg. (13) in mind, wherer andR denote the positions of the
050 M 2 system and the bath DOF, respectively. From the time-
dependent capacitpowen N,(t) the external work done by
i . At the environmental degrees of freedom upon the system can
|ps)0.5= exp{ - quj} ls)o; (198 easily be obtained by numerical integration,
t
Pr1= pR,O_{<Vqu(rvRO.5)>O.5+ VeHg(Ro 5 }At, Wr(t)= foNf(T)dT' (21)

i At i ) The analytical concept of time-dependent capacity is
|(’DS>1_EXP[_5Kq7]eXp‘_%Vq(r’RO-S)At]“PS)O-& straightforwardly extended to the quantum or quantum/
(19b) classical domain by using the time dependence of an expec-

A tation vaIue(ﬁ) [35],
Pr1 At
RJ_: R0.5+ V ?. (19C)

dQ) i~ . aQ(t)
“ar R AT ) (22
where subscripts 0, 0.5, and 1 denote dynamical variables
and wave functions at times t+ At/2, andt+ At, respec- where the second term on the right hand side takes account
tively. K, is the kinetic energy operator of the quantum vi- of @ possible time dependence in the Sclinger represen-
brational degree of freedom, and/(r R(t))=U4(r) tation. In quantum molecular dynamics capacities are time
H q H . . . . . _
V(I R(D)= Ut AsR(D)] is the sum of solute internal derivatives of the expectation values of Hamiltonian opera

/ . tors. Hence, the relevant capacities for our model quantum/
and solute-solvent potential energy operators according t8lassical Hamiltonian are as follows:
Eq. (13). '

Usually, one would switch back and forth between the <|:| )
position and momentum representation of the quantum state S
vector in order to evaluate the split operator kinetic and po-
tential propagators exactly. Since, however, the momentum

— (IR0, As) = + (A RO LA, (23

representation is of no value to us other than just for doing ~ d(Hq(t)) _ IHsd R(D)] _ IHsd R(D)] R
the kinetic propagation, we use a modified schefBg], dt ot IR '
where the symmetric splitting of the quantum propagator is (24

done according to A . .
d(AsdRO]) _ d(Ag  d(AqW)

ia i. : (25)
|‘PS>1:eXp{_;/L_HS%]eXp[_;L_HSiRO.S]At] dt dt dt
, dH Hsd R(1)] dH4(t)
. At B__ S - q
XeXP{_;/L—HST}Ws)o- dt < JR >vR(t)_ < dt > (26)

. In Egs.(24) and (26) the validity of the Hellmann-Feynman
Now the position andHs eigenfunction(diabatic basisrep-  force has been assumed. Numerical integration of these ana-
resentations can be employed to integrate the mean fielgtical expressions gives a corresponding work term accord-
Ehrenfest equations of motion. This modifi@tCKAPACK  ing to Eq. (21). The sum of Egs(23), (25), and (26), or
scheme is also SympleCtiC and Symmetric. Although the in'equiva|ent|y the sum of Eq$24) and(26)' must be equa| to

termediate state vectdps)os is different from the original  zero, which can be used to check the conservation of total
formulation, the results obtained are not changed. energy.

Besides the time-dependent expectation values of the
various energy terms along a simulated trajectory, the ana- IIl. MODEL AND SIMULATION PROCEDURE
lytic computation of the time derivative of energigmwen
and the work terms obtained therefrom by numerical integra- In the present work we employ the simple model Hamil-
tion, have proven a valuable tool for the mechanistic analysisonian of a harmonic breathing sphere embedded in a
of energy flow in nonequilibrium simulations of energy Lennard-Jones fluid at a reduced solvent density
transfer processel21,27. In a fully classical mechanical =gno®=0.75 to test the performance of the mean field
treatment, the time derivative of the enefgpwer, capacity  quantum/classical approximation against fully classical
corresponding to linear types of motion, e.g., translational osimulations for vibrational energy relaxation in solution. For
vibrational, is given by 34] a solvent Lennard-Jones diameterogf,,=3.405 A, as used
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in the parametrization specified below, the solvent numbegolute center of mass and tlith solvent atom along the

density isoy=0.019 A~3. distance axis, but does not change the shape of these func-
The precise form of our model Hamiltonian is as follows. tions.

The system, i.e., isolated breathing sphere, Hamiltofign According to thepiCcKAPACK algorithm described in Eq.
is (19), the system-bath interaction Hamiltonidtsg R(t)]

B2 2 g =Hgdr,R(t)] as well as the forces experienced by the clas-

Ag=—-— 5+ o€ (AT)?2, (27)  sical degrees of freedom, i.é(t) andF(t), have to be
2 or 2 evaluated at intermediate times At/2. From Eqgs(29) and
(30) we get

where u is the reduced mass of the quantum vibrational de
gree of freedom, anklforCEZ,uwS is the harmonic breathing IUG[AT, R (t+At/2)] =9
sphere force constant given in terms of the reduced mass ané .= — >, < LA > o
vibrational angular frequenay,. The meaning of the vibra- i

tional displacement variablar will become more transpar- Ui TR (L4 A2 B

ent below. The solvent bath Hamiltoniady is the sum of E=F.-3 IUij[Ri;( )] Jzﬁic+§j: 3

I

kinetic energiesk; and interaction energied;; of solvent ! i IR i
particles with positions and momentéR; ,pr.;)}, (30)
The capacitypowel exerted upon the time-dependent quan-
Hpan= > Ki+ > Ujj, (28 tum Hamiltonian A (t)=Fs+HsdR(t)], as calculated
' =) from Eqgs.(24) and (26),
vyherg the solutébreathing sphepecenter of massf{c,ﬁc) d(I:| (1) dHg )
kinetic energy dqt =— :_E Fej"Ucjs U¢j=0c—0j,
i
< :%ﬂzzlﬁclz (32
¢ 27 2m,

is determined by the quantum-averaged forﬁgpupon the
is included in the sunt, K, . Formally, the reduced mags solute center of mass, since all effects of bath internal forces

and the solute total mass, may be related to the masses Fij cancel out.

andm, of an effective diatomic solute through The time stepAt used to solve the coupled quantum/
classical equations of motion may generally be set equal to
m;mp At=0.01X27/ w(Nmad, Where o(Nma) = wo{Nmaxt1/2} is

Me=Mytmy,  p= me the angular frequency corresponding to the quantum ampli-

-~ ) ) tude of the highest eigenstate Blfs included in the time
The specific functional form of solvent-solvent potential en-gyolved state vector,
ergiesU;; is assumed to be of Lennard-Jones 12-6 type,
: o iicaiea=3 oo -2 iminleg
o - exp — 7 Hg= = exp — n)(n .
Rsow) ] Rij:|Ri_Rj|- 5 s [1¥s = 2 s,

12

Osol
Uij(Rij):4€soIV[< Rfov
ij

ij
(29 In our simulations starting from a mean quantum number of

. . . (A)=5, we setn,,,=20 to ensure that the amplitudes of
For the solute-solvent interaction energy, which is equal tocoherent wave packetsee below remain sufficiently small

the system-bath Hamiltoniakisg in our terminology, we  for n=n,,,, resulting inAt=0.1fs. In practiceAt values
have chosen a sum of modified Kihara potentials, up to ten times as large may be used without loss of accu-
racy, because the main effect of the solvent environment is to
(r|Asgr)= > Ugj(Ar,Rg)) shift the vibrational potential energy function verticalsol-
] vation), while fluctuating changes in the shape of this func-

12 6 tion are small.
-3 e ]l
] S ch—aAr ch—aAr ’

The parametrization of our model Hamiltonian has been

chosen to meet the conditions used to model ground kfate
(30) in argon cluster§37]. Parameterg, wg, Mg, €s, os, Moy,

€solvy Tsolv are summarized in Table I. Simulations have been
wherea=0.5. We note here that our breathing sphere Hamilperformed within theNVE ensembleconstant particle num-
tonian differs from the one which is frequently used to modelber, volume, and total enerpyat average temperature
VER in solution, e.g., Ref36]. While the latter model em- =300K, resulting in a reduced temperature af*
ploys a harmonically breathing solute-solvent Lennard-Jones kg T/ e, =2.503. Thus, the thermodynamic conditions
diameteros= oo+ aAr, we identify the vibrational breath- specified byp* andT* correspond to a supercritical liquid-
ing sphere coordinate as a fluctuating hard sphere diametdike state [*>Tg=1.316p*>p%=0.304) [38]. The in-
which shifts the interaction energy and force between thevitable rise of solvent temperature during nonequilibrium
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TABLE |. Mass and interaction parameters for our model

breathing sphere in a Lennard-Jones fluid. coherent stato

------- diabatic eigenstate A
----- - intermediate’ state | i}

0.050 -

(0] me €s Os Mgoly €solv T soly

22
(@my (em b (@mu (em?H (A (@mu (emt (A

63.45 220 253.8 130.3 3.617 39.95 833 3.405 0.025

energy redistribution in a microcanonical ensemble can be
kept within an acceptable range by appropriately adjusting
the total heat capacitisystem size In our case a value of
Ngon=500 for the number of solvent atoms is enough to
achieveAT<5K. T T T T T
In order to generate an ensemble of initial conditions for ) ) ) )
the classical degrees of freedom, we start from a breathing Ar[A
sphere constrained tAr=0, centered in a cubic box and

; . . . : FIG. 1. Quantum probability density in position space associ-
embedded in a fec lattice of solvent particles. This Conflgu'ated with the three types of quantum initial states at given mean

rati_o_n is equilibra_ted for 100 ps by repeatedly rescalirjg V€yibrational energy employed in quantum/classical simulations.
locities to the desired target temperature of 300 K. Additional

classical initial conditions are picked up after subsequent pe[hough interaction energies and forces at sBghvalues are

riods of 10 ps length. anishingly small, artificial high frequency components in

For each set of classical initial positions and momenta ote gpectral density of forces can principally arise from the
bath particles the breathing sphere is prepared with an eXPefiotion of atoms across the cutoff region. Therefore, we

tation value of five vibrational quanta, where the wave func-.,5ose to(vertically) shift and smooth potentiald (R) ac-

tion corresponds either to(diabatig eigenstatén) of I3|S, to  cording to
a coherent state specified 39|

0.000

quantum probability density p(r)

U (R
jof?) g o U<R>=ULJ<R>—UU<Rcuo—[%] (R—Reu,
= - — R=Rgyt
|ar) exp{ 2 ]no\/ﬁ|n> (33 cu 34

in terms of harmonic oscillatqiHO) basis functions, or to a whereU3(R) is the original Lennard-Jones interatomic po-
superposition state intermediate betwéenand|n). Coher-  tential. The resultant forces are thus given by

ent states are eigenstates of the annihilation opeéatae.,

ala)=ala) and (a|a* =(ala*, where the coherent state ~ FrR(R)=—VRU(R)=—VRU (R) +{VRULs(R)}r=r
parametera determines the initial vibrational phase of the (35

corresponding HO through » ) )
The modified potentials and forces satidffR.,)=0 and

A | h . Fr(Reu) =0, respectively.

IV. RESULTS AND DISCUSSION

and Among the various possible quantum initial state vectors

P a.t a given mean vibrational energy, coherent states and
(Pr)a=—i £ O{a_a*}’ eigenstates of the harmonic oscillator represent wave func-
2 tions of extremely different character. While coherent states
) ) ) R are the most classical-like quantum states that may be con-
and the mean occupation number is given B,  structed, eigenfunctions of the HO Hamiltonian do not pos-
=(a|a"&|a@)=|al?. The uncertainties in position and mo- sess a classical analog and a classical vibrational phase can
mentum space associated with these wave packets are miRjrgrefore not be assigned. Figure 1 illustrates the three types
mal as measured by the product of standard deviationgy injtial state vectors, namely, coherent, diabatic, and “in-
o Xop =h/2, and thus coherent states are the mostermediate” wave packet, in the position space representa-
classical-like wave packets that may be constructed. tion.

Ensemble averaging over 50—100 trajectories is typically Before we give a detailed account of the results obtained
sufficient to average out statistical fluctuations. Here we emfrom quantum/classical simulations of vibrational energy re-
ploy an ensemble size of 50 individual quantum/classicalaxation for the various quantum initial conditions, we briefly
time evolutions. mention that completely classical simulations using the same

Potential energies and forces are computed for all intermodel Hamiltonian and parameter conditions give strictly
atomic distances below a cutd®. equal to four times the exponential energy relaxation with a nonequilibrium relax-
largest Lennard-Jones diameter, whiclrisin our case. Al-  ation timery=12 ps, which is in accord with the result of a
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9 o coherent 0.5 w&
] A diabatic ? mn =0
" 8 v intermediate o . o o oy 2y,
é 7 - - - quantum statistical equilibrium _§ *
:
5 2
g B
3 K]
8 2
c 3
] ©
: :
0 0 20 30 40 50
Time [ps] Time [ps]
FIG. 2. Quantum/classical ensemble averaged time evolution of g 3. Diabatic state, i.e., harmonic oscillator eigenstate, popu-
mean vibrational energlin terms of mean occupation numb&or  |ations averaged over classical bath initial conditions for coherent
different quantum initial conditions. initial state.

linear response treatment using the fluctuating external SOléigenstates. The effective vibrational temperature calculated
vent force correlation function.

from (A),_.. at long times and the quantum statistical ex-
_ pression forn(wg,T) is Td=1090 K. The relaxation to-
A. Mean energy relaxation wards that long time limit, however, is—to a very good

In Fig. 2 we compare the ensemble averaged mean vibrapproximation—exponential in tim@able Il), and the relax-
tional energy—in terms of the mean occupation numbemtion time obtained is larger than but close to the classical
(A)sg—as a function of time, starting from the different (and quantumrelaxation time.
guantum initial states. Distinctly different behaviors are ob-
served: While coherent states relax towards thermal equilib- B. Diabatic level populations
rium, the nature of which will be examined later, eigenstates In Figs. 3 and 4, we show the decay of diabatic level

experience an unphysical heating effect. We note here that . . . ) :

: . . opulations, i.e., the diagonal elements of the density matrix
this heating effect is not only an ensemble averaged propert N the basis of HO eigenstates, for the ensembles of coherent
rather it is observed also for individual quantum/classicaI(Fi 3 vs diabatic in?tial stateéFi 4) with an expectation
trajectories starting from an initial eigenstate, where theval%e of (AY=5 at time zero Th(ga.anal sis revera)lls that the
mean energy is never allowed to fall below its initial value. ' y

quantum/classical ensemble of coherent initial states relaxes

In addition, the coherent state relaxation i:~3—apparently—%jwarols a quasicanonical distribution at long tinfsse be-

nonexponential in time. Table |l reports the decay parameterow) while the ensemble of diabatic initial states does not
obtained from a biexponential fit of the coherent state energy” ' S o e . :
For the latter initial conditions it is clearly visible that,

decay, where(fi)—n(wo,T) is assumed as the long time while the initially occupied leveli{=5) is depopulated, the

limit and n(wg,T) is the quantum statistical mean thermal velsn=5+1 are populated with essentiallv the same orob-
occupation number. We will see, however, that the apparer%?bi”t at a_ ven tliomg The same is true f)[;:5+2 (noF:
nonexponentiality of coherent state energy relaxation is duP'Y 9 ' ~

to a misinterpretation, since the quantum statistical meaﬁhowr? and a!mos'_[ true fom=5i_3. Thus, the_ stoc_has_n_c
thermal occupation number at given bath temperature is nOgvolutlon of diabatic level populations in the diabatic initial

the correct stationary value at long times subject to the mean

field Ehrenfest equations of motiggquantum/classical equi- 1.04
librium). ; n=5
Contrary to the coherent state case, an ensemble of “in- g ¢sd V | "f‘;
termediate” initial superposition states does not relax to- g . :; 2
wards a physically reasonable equilibrium, althoughenergy 8 o¢¢4  ~  |.... n=8
dissipation is observed—in contrast to an ensemble of initial _3
$ 04
TABLE II. Preliminary analysis of coherent and intermediate o
initial state energy relaxation(fi),— quantum statistical equilib- § 0.2
rium). 8
0.0
Fit 71 (ps) T2 (ps) <T> (ps) T v T v T v T v T T T
0 10 20 30 40 50
Coherent 7.%0.4 (69% 49+1 (31% 21 Time [ps]
Intermediate 13.%0.3 13.7

FIG. 4. The same as Fig. 3, but for diabatic initial state.
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054 F;lassica.l
o
§ o O
: O
g 0.3 N
g ) [ R(t) Fguantum O
2 024
0
i O
O
h-
0.0 FIG. 7. lllustration of interactions between quantum and classi-

0 10 20 30 40 50 cal degrees of freedom in our model system according to the mean
field Ehrenfest ansatz.

FIG. 5. The same as Fig. 3, but for intermediate initial superpo-r.nay be exp_laingd as follows. Molecular friCtiqn is a correla-
sition state. tion effect, i.e., it emerges from a backreaction of the bath

degrees of freedom upon the motion of the relevant system
state case corresponds (anbiasedl “diffusion” in energy ~ DOF, where—under the quantum/classical EOM—the clas-
space at early times, affected by the lower boune @) of ~ Sical environmental DOF monitor the motion and energy
the Hilbert space of diabatic basis functions at later timescontent of the quantum system only via an expectation value,

which naturally explains the heating effect. A more detailed!-€- & Hellmann-Feynman-type force. This is schematically
analysis will be given below. illustrated in Fig. 7. As a result, energy dissipation can within

In Fig. 5 is shown the evolution of diabatic level popula- & Mmean-field-type quantum/classical approach only arise, if
tions for an ensemble of intermediate initial superpositiontn® Mean energy content of the quantum subsystem reveals
states, which—as in the coherent case—relaxes towards ig€lf at least to some extent through a dynamic evolution of
quasicanonical distribution. expectation values associated with the quantum system under

Figure 6 summarizes the results obtained for the varioughe action of the bare system Hamiltoniglig. While this is
quantum initial conditions by comparing the final level popu-true for superposition states constructed from eigenstates of
lations att="50 ps: Relaxation towards quasicanonical distri-H, it is definitely not for the eigenstates themselves. More
butions for initial superposition statésoherent and interme-  specifically, for a coherent state, i.e., a minimum uncertainty
diate with effective vibrational temperatures did4=490  wave packet, the expectation value of energy is completely
and Tdy=1115 K att="50ps, respectively; diffusion in en- defined through the expectation values of position and mo-
ergy space for a diabatic initial state. Thus, in the latter casementum which move in time as in classical mechanics. For
abreakdown of detailed balanagearly emerges as a conse- an eigenstate ofls, however, the energy is exclusively en-
quence of the mean field Ehrenfest quantum/classical equaoded in the shape of the wave function, i.e., its nodal struc-
tions of motion. The same applies, to some extent, also to thgire, which has little effect on the Hellmann-Feynman force.
intermediate-type initial superposition state. This will be- Arbitrary (intermediaté superposition states are located in-
come more clear, when we analyze the nature of quantundetween the two limiting cases, i.e., part of the mean energy
classical equilibrium. is encoded in terms of nonstationary expectation values and

Considering the basic ingredients of the mean field Ehrenpart of it is encoded in the nodal structure of the wave func-
fest equations of motiofEOM), our results described so far tion (see Fig. L

0.5 C. Heisenberg uncertainty relation
g 0.4- ::gi:mm Since the way, how the mean enexgdys) is encrypted in
8 —g— intermediate the shape of the system wave function, is tied to the delocal-
§ 0.3 ization in position space, we might expect that the dynamic
% evolution of mean energy relaxation, i.e., the energy relax-
3 02 ation times), is affected by the uncertainty in positigand
-% momentum space at time zero as well as its dynamic evo-
€ 041 lution averaged over the quantum/classical ensemble. A natu-
® ral starting point for investigating this perspective is the
0.0- Heisenberg uncertainty relation,
0 5 10 15 20 h
O-Ara-p2 BX (36)
vibrational quantum number n 2

FIG. 6. Diabatic level populations & 50 ps for different quan- where the equality sign holds for coherémtinimum uncer-
tum initial conditions. tainty) wave packets. Figure 8 shows the quantum/classical
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0.525+ states, which is, however, not observed. Considering the co-
1 herent initial state case, we are led to the conclusion that

g 05201 the—artifactual—nonexponential relaxation cannot be due to
g : the observed small dynamic increaseoqf, o, .
a 0.515-
g 1 D. Breakdown of detailed balance

0.510- . . .
§ ] To theoretically investigate the approach towards
3 0.505 quantum/classical equilibrium, it is convenient to start with a

- Pauli quantum master equati6QME) [39],

0.500- dp,

T T T T T F:_ % knﬂm pn"’% kmﬂnpmv (37)

0 10 20 30 40 50

T
e [pel for the (diabatig level populationsp,,, where the state-to-

FIG. 8. Quantum/classical ensemble averaged time evolution oftate rate coefficients,,_.,, have to satisfy the detailed bal-
position-momentum uncertainty produat units of#) for coherent  ance constraint

initial state.
. . . knﬂm . Pm| _ AEmn
ensemble averaged evolution®f, o, as a function of time K - p_ =exp — KaT '
e . . m—n n/e B ! bath
for the coherent initial state case. An increase of the uncer- q

tainty product is observed which amounts~d% occurring
on a time scale ofr=10 ps, which is on the order of the
classical energy relaxation timeg,=12 ps.

For an eigenstate of the HO Hamiltonian with quantum

in order to drive an arbitrary initial population of energy
levels towards the correct thermal equilibrium distribution
defined by the bath temperature.

. . A complete neglect of detailed balance, as apparently ob-
number n the uncertainty product is equal 00y gened in Sec. IV B at early times for the diabatic level popu-
:ﬁ. (n.+ 2). Here, an increase is a!so opser}(adt Sh‘?W')’ lations starting from an ensemble of diabatic initial states
which is, however, below 1%. As Fig. 6 implies, the increase «ittysion” in energy space, would ultimately lead to a

of the uncertainty product is due to the population of higher iform distribution among the energy states characterized
excited vibrational states. Thus, ensembles of coherent cgy an effective temperature of—. To investigate
diabatic quantum initial states are relatively stable with re{ jhather this is the asymptotic limit for diabatic initial states
spect to a relative increase of the uncertainty product. ubject to the mean field quantum/classical EOM, and to

Figure 9 shows the ensemble averaged evolution Ofgiaplish a connection between the quantum state-to-state
o107 for the intermediate |n|t|a~lstate case. Here, the unceriieq and the classical rate of energy relaxation, we use the
tainty product amougts toyop=2.4% att=0 and arela- 4 4en ruld 35,40 assuming that the dissipative effect of the
tive increase of~23% is observed on a time scale of gy gtem-hath interaction can be treated by the first-order per-
=10 ps, while at later timesy, o, decreases again, as ob- rhation theory.

served for an ensemble of coherent initial stafeig. 8). According to the golden rule expression in the time do-
If we would assume that the dynamic growth of uncer-main,

tainty in position space will affect the time scale of energy

relaxation subject to the mean field quantum/classical EOM 1 [+ R R

then we would be forced to expect nonexponential energy kmﬂnzﬁf dte “m' (Vi (OVym(0))ge, (38

relaxation for the ensemble of intermediate superposition

the state-to-state rate coefficient is proportional to the Fou-

3.04 rier transform of a quantum-bath correlation function, evalu-

5 2_9_' :ilted at the transition frequen@y,,= w,— @,. The term

é 28] Vinn(t) is a matrix element in thiédiabfi\tic) system basis

g " {|n)} of the system-bath interactidthsg= V;,; in the interac-

g 274 tion picture. Since&(V,n(t)Vom(0))ge is @ complex-valued

8 26 function of time, it cannot be directly substituted by the clas-

5 . sical real-valued functiofV,,,(t)V,m(0))¢ . Direct replace-
251 ment of(V () Vam(0)) s by the classical correlation func-
244 tion leads to neglect of detailed balance from the start. As
23 described by Oxtoby and by Okazdld1,23, one way to

circumvent this problem while using the classical correlation
function is to employ the detailed balance relationship be-
tween k,,_,, and k,_,,,, and to exploit the properties of
FIG. 9. The same as Fig. 8, but for intermediate initial state. ~quantum mechanical correlation functio@], yielding

Time [ps]
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to thermal energy of a vibrational DOF vs the quantum statis-
f dte omn' tical mean energy of the same oscillator at a given bath tem-
o perature. This ratio cannot become larger than unity, which is
X (5[ Vin(1),Vam(0)]4 ) gs. a consequence of the linearity ansatz Fog used in the
derivation. If multiquantum transitions become important,
where the symmetrized quantum correlation function may bée., the linearity ansatz breaks down, the relation implied by
replaced by its classical anal@y mn(t)Vam(0))e . The pre-  EQ. (43) does no longer hold. However, our results obtained
factor in Eq.(39) contains the detailed balance constraintfrom quantum/classical simulations seem to justify the lin-
e Phemn=k_ [k, ., whereB=1/kgT. By assuming that €arized treatment described above. In fact, the parameter
V. is linear or almost linear in the oscillator displacementconditions of our model system were chosen such as to ob-
AF, i.e., Vir(t)=—FE(t)Ar 1y, We arrive at the expression tain a suitably shprt energy relaxation time as a resul_t of the
relatively small vibrational frequendgnergy level spacing
Thus, by construction the quantum energy level spacing is
located in the frequency regime where the external force
spectral density is still large, and it is sufficient to keep the

dominant linear term only in the expansion }BEB (see the

- . ._discussion in Ref[20]).
for the state-to-state rate coefficients in terms of a fluctuating |, rger to see how the neglect of detailed balance

1 2
Km-n=%2 15 ¢ Phomn

(39

1 2|Arp?

+ o0 .
Kim-n™ 72 15 g Bhomn f_w dte“mi(FE(tFF(0))q

(40

external force correlation functioF;(t)F;(0))y. If and

only if we employ the linearity ansatz fotsg=V;,, can we
establish a connection betwedq, ., and the classical

emerges, and to theoretically predict the resultant energy in-
crease induced by the bath fluctuations, we write the linear
rate equation for the expectation value of the number opera-

frequency-dependent friction coefficient. The matrix ele-tor (i), as may easily be derived from the Pauli QME, in the
mentsAr,, allow for single-quantum transitions only, and form
the rate constants starting from levelkcan be brought into

the simple form d(A) -
ot (k10— Ko_1){N) T Ko_.1=—K{(N) —N(wo,T)},
Knonr1=Kn(n+1)=ko_1(n+1), (41 (45)
— where K; .o—ko_.1) =K andk,_.,=K n. Breakdown of de-
Knn-1=K(M+1)n=k;_on, (42 tailed balance is equivalent to neglecting unity agamste.,

— R settingk;_o=Kkg_ 1. In the same sense, we have to neglect
whereK is the average rate of energy relaxation ande- o zerg point energy in the denominator of the quantum

po_tes the mean thermal occupation number. Detailed bala”(ﬁﬁefactor[Eq. (43)]. As a result, we arrive at the following
is incorporated through expressions:

I(nﬂnJrl koel — kaT
= = — =g Bhog —{@fhog_ 111 . "B
kn+ 1—n k1_>0 n+1 € ' n {e l} = ﬁwoﬁﬂ (1)0), (46)
The quantum average rate constant of energy relaxation is
related to the classical rate through —  kgT
ki o=ko.1=Kn= h_wo)’(wo)- (47

Kg Thath

=Ka= oot 172) K@

qu (43

For later reference, we note that the precise relation tf
frequency and temperature is unimportant for the determina-

where the classical rate coefficient, which is equal to thdion Of Ko_.1, becausa cancels by Eq46) and(47). From
frequency-dependent friction coefficient@t wo, is in turn  £4S-(45—(47) we see, that neglecting detailed balance leads
related to the external force correlation function via at© 2 linear increase of energy of the quantum vibrational

fluctuation-dissipation theorefd2], c_iegree of fr_eedom, the slope bei_ng equak_@gl. In this
limit, the ratio ofkgy_,; vs the classical damping ratg wg)

is nothing but the classical limit of the mean thermal occu-

pation numbefassumingBf wy<<1), implying that within a

time t= 1 the energy increases tgT.

In Fig. 10 we compare this prediction to the results of
mean field Ehrenfest simulations starting from an ensemble
In this simplified treatment we neglect the frequency shiftof diabatic eigenstates. Instead of anboundedinear en-

Aw induced by the average static effect of the solvent enVi'ergy growth’ we observe eontrolled exponentia|_type in-
ronment. The quantum prefactor in E¢3) defining the ra-  crease of vibrational energy. Comparison to a Pauli QME

tio Kq,/Kg is nothing but the ratio of the classical mean simulation with the same number of HO basis states as used

_ 1 o
KC|E ’y( w0)= m J'O dt COS(wot)<F$(t)F$(O)>cI-
(44)
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9.5 to the expectation values of position and momentum, as well
9.0 4 QCMD as to the expectation value of the number operator, which is
§ 854 :::::':::YQME a measure of energy, facilitates the derivation of a quantum/
£ 8.0 classical Langevin equatidhE) for «(t) from the equations
E 75 of motion for (Af), and{p,),. From this LE, a rate equa-
S tion may, in turn, be derived fdih). According to the Ehren-
g 707 fest theorenj43], the expectation values of position and mo-
% 651 mentum are governed by the classical Newtonian equations
g 6.01 of motion,
g 55
50] d(ar)  (pr)
45 — dt o’
0 10 20 30 40 50
Time [ps] d(p - - .
| _ <(ft> =~ noi AN+ (F7),  Fr=-VHsdR(D].
FIG. 10. Comparison of the energy growth obtained by mean
field QCMD for a diabatic initial state to the results of a quantum (50)
gwllster equation analysis assuming a complete neglect of dEta“elgquations(SO) except for the classical time dependence of
alance. !

FER(t)], are exact irrespective of whether a fully correlated

in the QCMD simulations rf,,=20) clearly illustrates that ©F @pproximate total many-particle wave function is em-
the saturation observed via QCMD is not due to a truncatiofl0yed- From these equations a generalized Langevin equa-
of basis, which has, of course, been taken care of in thdon (GLE) or approximate ordinary LE may be easily ob-
quantum/classical treatment. Thus, the slower-than-lineat@ined[42],
energy increase obtained by QCMD must be due to an evolv-

ing dynamic correlation between quantum and classical sub- (Mi = Pr
systems as a result of the quantum system being driven into dt = u’
a coherence by the classical bath. We will come back to this

issue. dpy

t
rTa — pwgAr— jo Y(7)p,(t—n)d7r+ SFH(t)

E. Quantum/classical Langevin equation 5 e
. . . =~ pwoAr — y(wo) py(t) + 6F (1), (51

In order to provide a basis for understanding the coherent

state relaxation subject to the mean field Ehrenfest equationghere expectation values have been replaced by their classi-
of motion, we derive in this section a quantum/classicalcal analogs. The time-dependent friction kernét) is re-

Langevin equation for the coherent state parame(¢y de-  |ated to the fluctuating force correlation function through
fining a minimum uncertainty wave packet for the harmonic

breathing sphere vibrational degree of freedom. The small 1 . .

relative increase of the ensemble averaged uncertainty prod- y(t)= m(b":r(t)&:r(())% (52

uct observed in Sec. IVC, when starting from a coherent

state initial wave packet, justifies the assumption that thguhere we recall thadF&(t) is to be understood as a quantum
evolving state vector may be fixed {@s(t))=|a(t)). AS  expectation value, the time dependence of which is exclu-
stated by Eq(33), a coherent statfr(t)) of the harmonic  sjvely due to random fluctuations of thelassical bath. The
oscillator is a special superposition state constructed frompproximate ordinary LE form stated by E@1) is facili-

HO basis statefn), tated when transforming from time- to frequency-dependent
o2 . friction, Eq. (44), using the fact that a harmonic oscillator
_ _lal a Al o\ — has associated with it a precise, energy-independent time or
| (1)) exp[ 2 ]; \/ﬁm’ 8la)=ala), frequency scalewy=27/7,,. Using Eq.(48), we arrive at

the quasiclassical LE for the coherent state parameter,
(a|lat=(ala*.

da ) 'y(a)o){ 4 i SFF(t) 53
i ihi i o —— =—lwgd— ———ja—« — .
Coherent states are eigenstates of the annihilation opérator dt 0 2 v rﬁwo

where the coherent state parametds the eigenvalue. The

fact thata(t) =(&), is related via Either from the latter or, more directly, from the Pauli master

equation, we obtain a rate equation, E45), for the mean

N 1 poo o (Pra occupation numbetf) in the quasiclassical limit
a(t)E(a)a=—{ (AP) +i , (48 P q '
V2 h Vuho
’ e My o keT
Ja(t)[2=(a" a),= (A), (49 T N T
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6: © QCMD relaxation time isrq,= 13.1.psa.rc|_. So_, our numerical result.
2 - - - quantum/classical equilibrium for coherent state relaxayon is just in between the classical
1 3 —— Pauli QME (quasi-classical) and the quantum relaxation time. We expect, however, that
54 more extensive averaging over classical initial conditions

will drive the numerical value more close to the classical
limit. Comparison to the result of a quasiclassical Pauli QME
simulation shows that the agreement is reasonably good, but
statistical fluctuations have not been eliminated completely.
In summary, the only quantum effect that remains, when
simulating energy dissipation starting from an ensemble of
coherent initial states of a HO immersed in a classical bath
using the mean field Ehrenfest or classical path method, is
the zero point energy constraint.

mean occupation number

0 10 20 30 40 50 The statistic;al mecha}nical propgrties of t.he mean figld
. quantum/classical equations of motion emerging from the in-
Time [ps] vestigation of coherent state energy relaxation, lead us to a

FIG. 11. Coherent initial state energy decay towards quasiclasr-r.1ore qr less stralghtfquard Interpretation of_og_r QC,:MD
sical equilibrium(see Table Ill as compared to quasiclassical Pauli simulation results obtained for ensembles of initial eigen-
QME simulation = ry, N=KkgT/%wp). states and intermediate superposition states, respectively, by
generalizing the coherent state results to arbitrary initial
wave packets.

From an analysis of the quantum/classical equation of

_ _ kgT motion for the relevant systefwibrationa) energy( |:|s>, we
Bhwo<l—K=K¢, n=-"r. (54)  can show that in the linear response regime a classical-like
0 fluctuation-dissipation theorem holds. The time derivative of

Note that Eq(53) and also Eq(54), when derived from Eq. (Hs) is given by[see Eq(23), Sec. Il
(53), is exact within the mean field Ehrenfest framework, to

the extent that the linear response theory holds and the wave d(I:| )
packet is identical to a coherent state throughout the S
guantum/classical time evolution. The essence of this result dt
is that an ensemble of coherent states must relax towards a i
quaS|_cIaSS|caI qu|llbr|um_subject to the mean field quantu_m/ — _<Vr2HSB[R(t)]>+<F$[R(t)]'i}r> . (55)
classical EOM, irrespective of whether or not the ratio 2u

hwolkgT facilitates a rigorous justification, the reason being

that the bath fluctuations are described classically. For reaNhereIEf[R(t)]= _VrHSB[R(t)] andd,=p,/w. In the lin-

sons of consistency with the corresponding classicagar response regime we make use of the assumption

fluctuation-dissipation theorem 'the energy relaxatlon t'mquB[R(t)]z—lff[ R(t)]F, and thus the external force opera-
must then be equal to the classical relaxation tirge ~ e e lassical f .
In Fig. 11 we compare this prediction to our QCMD simu- tor F TR(t)]=FR(t) ] becomes a classical function depen-

lation results while fixing the long time limit of the mean dent on the positions of bath particles only and the second-
occupation number to its classical Valuecﬁhﬂoc derivative termVrZHSE.[R(t)] vanishes. As a result, we end
—kgT/hwg. The result of a quasiclassical Pauli QME simu- up with a classical-like expression for tl(]él s) equation of
lation (7=, N=kgT/hwy) is also shown. The approach motion[see Eq(20), Sec. I

towards quasiclassical equilibrium is indeed exponential to a

good approximation, the relaxation time being very close to <A > " (AP

the classical onéTable IIl). We honestly note here that the d(Hsg o] d(Af

quantum prefactor, Eq43), is close to unity(=0.917 for dt =FR(D)] w st[R(t)]T' (56)

the model system chosen here, and therefore the quantum

By the Ehrenfest theorefiEqg. (50)] the(p,) and{Af) equa-

TABLE IIl. Fit parameters for coherent, diabatic, and interme- tions of motion are analogous to the classical mechanical

diate initial state energy relaxation towards quantum/classical equ'éxpressions, from which a quasiclassical Langevin equation

where, in the classical limit,

- %qﬂq(t)v':’s]): %‘([HSB[R(t)],KSD

librium. [Eqg. (61)] may be derived using the linear response ansatz.
. The essence of E@56) is that energy dissipation of a quan-
Fit 71 (P9 (n (ps) - : . :
tum oscillator subject to the mean field Ehrenfest equations
Coherent 12205 12.3 of motion is connected to the frictional response of the clas-
Diabatic 171 17 sical bath to the motion of the quantum wave packet repre-
Intermediate 1+1 11 sented by the expectation value of momentiamd position

only.
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In the classical path method the classical subsystem moni- 60_‘

tors the state of the quantum system through an expectation _ J -
value, namely, the Hellmann-Feynman force of Ef). As 2 55
a result, an excess energy of the quantum subsystem, en- § 50 4 diabatic

. . . . .0+ v intermediate
coded in the wave function, is detected by the classical en-  § } - - - QC equilibrium
vironment only to the extent that it expresses itself by way of & 4.5 — Pauli QME (quasi-classical)
a nonstationarity of the Hellmann-Feynman force under the § 4_0_'
action of the system Hamiltonidfs. A coherent state of the c .
harmonic oscillator is a Gaussian wave packet of minimum § 3.54
uncertainty, where the expectation values of position and 'Y i -
momentum, which move as their classical counterparts as ;
stated by the Ehrenfest theorem, E50), completely define 2.5+ - - - y -

the expectation value of energy in terms of the coherent state
parameter(t), Eqgs.(48) and(49). In this sense, a coherent
state wave function of the HO represents a quasiclassical g, 12, nitial eigenstate and intermediate initial state energy
quantum state. It therefore seems natural to define, for apjaxation towards quantum/classical equilibri¢eee Table 1) as
arbitrary quantum state of the harmonic oscillator, a refercompared to quasiclassical Pauli QME simulation=(ry,n
ence coherent state that has the same expectation values -0k, T/4 w,).

position and momentum associated with it as the actual wave ) o
packet, In Fig. 12 we analyze the decay of ensembles of initial

eigenstates and intermediate coherences, respectively, to-
wards the assumed quantum/classical equilibrium introduced

1 wwy (P above, i.e., (N)—nytkgT/hwy and (A)—A{N)ien
apef(t)=— T(Ar)ﬂ —_—. (57)  +kgT/hwy. In both cases, relaxation is exponential to a
V2 phag good approximation, where the relaxation time obtained for
the intermediate initial state case is reasonably close to the
The reference energy calculated from these expectation vagiassical energy relaxation tim@able I1l). The diabatic ini-
ues (M) et)=|ae(t)|% then corresponds to that part of the tial state case can be understood in terms of a quasiclassical
actual mean energy, which is detected by the classical envhkeating of an initially “cold” oscillator induced by the clas-
ronment. The remaining partA<ﬁ>inertE<ﬁ>(t)_<ﬁ>ref sical bath. The numerically obtained relaxati_on time, how-
=const, is “inert” with respect to energy dissipation in a €Ver, is too large as comparedtg. The question, whether
classical bath and therefore contributes toedfectivezero  this is merely a result of limited statistics or resultant from
point energy. the effect of the delocalized wave function upon the
For a coherent state, the reference state is identical to tHaellmann-Feynman forc&g™= —(VeHsd R(t)]), must be
actual state, i.eA(A)iner,=0. In the initial eigenstate case left open. Comparison to the result of a quasiclassical Pauli
(quantum numbeng), (A)rern,(t=0)=0. Therefore, the to- QMEtS'f”:L"aF'OHt(T: 7t'c| ’ ”_E k‘?{T/h‘i’O’ Fig. 12 takm% ac-

- N o R count of the inert part of vibrational excess energy, however,
tal initial mea'n. gnergy IS .|nert4'3<n>inen,n0.=(ln)no(.t—0) suggests that botﬁ diabatic and intermediate in%i)gl state en-
=g, and the initially occupied eigenstate is identical to theergy relaxation within the QCMD approximation are consis-
effectivezero point level. As mentioned earlier, this is evi- tent with a quasiclassical picture of the relaxation process,
dent from the behavior of individual quantum/classical tra-while statistical convergence has not yet been achieved.

Time [ps]

jectories, subject to the mean field equations of motion. Let us note here that our procedure of defining “quasi-
In our simulations starting from an intermediate superpo-<lassical” and “quantum” parts of the mean energy of a
sition state, guantum oscillator can at most be approximately applicable

only, because the classical bath does not “observe” the ex-
pectation value of the HO displacement but the expectation

lps(t=0))= \/;|no_ 1)+ \/g|no>Jr \/;|no+ 1), value of F&=—VgHsd R(t)], which may only approxi-
mately be linear im?.
1 n no+1 F. Approach to quasicanonical equilibrium
aref(t:0)=—[ \ﬁ+ 2 ]:1.657, pproach fo a- ‘
2 2 2 In the preceding section we have seen that the mean en-

ergy relaxation of a quantum oscillator in a classical bath
subject to the classical path equations of motion can be un-
(A)ref(t=0)=2{ng+ 3+ VNo(No+1)}=2.744, ny=5, derétood in terms of a ansiclaisical relaxation, where only a
fraction of the total mean energy, which is “stored” quasi-
and the inert part of the mean occupation number is classically in the evolving quantum wave packet, is subject
A(N)iner=No— (M) (t=0)=2.256. This isalmost exactly to dissipation and fluctuation in a classical environment.
the lower bound of mean energy which is observed for indi- On the level of diabatic state populations, the quasiclassi-
vidual quantum/classical trajectories starting from the intercal relaxation process just described quite obviously cannot
mediate superposition state. lead to a canonical structure of the equilibrium level distri-
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butions for arbitrary quantum initial states. When part of the w 207
guantum mean energy is inert, and therefore contributes to @ 1 © exact entropy
the effectivezero point energyZPE) under the mean field - 154 . E;;‘;’;fie"tmpy
guantum/classical EOM, the populations of levels below the -2 {1
effective ZPE do not lend themselves to a proper physical 8 104
interpretation. This is immediately evident in the diabatic ..g :
initial state caséFig. 6 in Sec. IV B. However, even for an 5 54
intermediate superposition state, where part of the total mean ‘g’ ]
energy is inert towards dissipation, the final equilibrium dis- S 0
tribution closely resembles a canonical qiég. 6). £
In this section, we investigate the approach to quantum/ & g
classical equilibrium by exploiting the special properties of ®

the harmonic oscillator equilibrium distribution function. As 0 10 20 30 40 50
a global measure of the evolving quantum state distribution ) Time [ps]
{pn} we use the nonequilibriurtinformation entropy

—_—
Q0

20
© exact entropy
+ canonical entropy
S(t)=—2 pnIn py=InNeg(t) (58 154 o difference
n

defined in terms of the dynamically evolving diabatic state
populations p,(t)=pna(t), instead of using S(t)=
—Tr{psInpg [39,42. The identity S(t) =In Ng(t) is em-
ployed for the sake of an intuitive physical picture of the
nonequilibrium entropy, defining a reference distribution
whereN states are equally populated. At canonical equilib-
rium characterized by the temperature paramgterl/kgT,

TN

effective number of occupied levels

the populations of HO energy eigenstates are givefi38y 0 10 20 20 40 50
(b) Time [ps]
n\" 1
ph=\=——+ _—=e_“57“"0{1—e_ﬁh“’0}, (59 FIG. 13. Approach to quasicanonical equilibrium for coherent
n+1 +1 initial state;(@) QCMD results(b) quasiclassical Pauli QME simu-
wheren is the mean thermal occupation number. Note that a&atlon.

guantum/classical equilibrium has to be replaced by its
classical limit. Due to the specific dependenceggponn at  numerically exact equivalence to a canonical distribution is
canonical equilibrium, the information entropy may be solelyobtained at long times. In the intermediate superposition

expressed in terms of the mean occupation number, state case a small but notable difference between exact and
canonical reference distributions remains even at long times.
Seanonica 1) = ((A) + 1)IN((A) + 1) — (A)In(A), This is in accord with our notions stated above regarding the

nature of quantum/classical equilibrium for arbitrary quan-

; tum initial states.
((Ry+1)m*L

Ncanonica t) = Wm—a (60) 20-
2 ]
where we have replaced the stationary vafudy its dy- 2 151
namic analoguéf). Thus, whenever the exact information 3 10‘
entropy, in terms of state populations, is equal or close to the g ]
canonical reference entropy, given in terms of the mean oc- g 5-
cupation number, may we assign an effective temperature to 5 1
the relaxing ensemble, whet&) may or may not be station- é
ary. The relaxation towards a quasicanonical distribution can 2 _5: - e,
be described via the decay AfS(t)=S(t) — Scanonicalt) Of 2 ] exact entropy
ANe()=Nef(t) —Ncanonica 1) - E -104 f ; ziaf?:r:::;entropy
Figures 183 QCMD, 13b) Pauli QME treatment, and 14 15‘

show the relaxation of level distributiofp,} towards qua-
sicanonical equilibrium for quantum/classical ensembles of
coherent and intermediate initial states, respectively. While
the time scales are approximately equal in both cases ( FIG. 14. The same as Fig. 13, but for intermediate initial state
=4.5ps), we note that only in the coherent state case &QCMD results only.

0 10 20 30 40 50
Time [ps]
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state and eigenstate limits relaxes towards a stationary en-
semble, where only part of the initial excess energy has been

0.5 Pauli QME

f 0.4 dissipated into the classical bath.

§ In order to provide a basis for the rationalization of physi-
_§ 0.3 cal artifacts produced by the mean field quantum/classical
& equations of motion, two limiting theoretical cases have been
_% 0.2 examined:(i) the complete breakdown of detailed balance
© using a Pauli master equation analysis éndthe relaxation

g 01 - of a coherent state wave packet using a quantum/classical
3 ' Langevin equatiorfiLE) derived from the QCMD equations

00+ - s i -- “aaen = Of mo“on

T T T T T T The results show that a complete breakdown of detailed
balance, leading to a linear energy increase induced by the
Time [ps] classical bath fluctuations, is not an adequate model for un-

FIG. 15. Time evolution of diabatic state populations for coher-derSt"jlndlng the initial eigenstate case. Rather, an initial

ent initial state as compared to a quasiclassical QME simulatioff!9€nstate is driven into a coherence via the system-bath in-
[K=Ky, T=ksT/hwy; see Fig. 18)] teraction, thereby increasing the system-bath correlation in a
— Nl ITRB 01 . .

classical dynamical sense, which in turn leads to a controlled
energy growth. The quantum/classical Langevin equation, on
he other hand, adequately describes the quasiclassical relax-

In Fig. 15 we compare the decay of level populations for.
the coherent state case obtained by QCMD and by a Pauliiq of an ensemble of coherent initial states.
master equation treatment, where—as in Figbk3-the av- The success of the quantum/classical LE ansatz points
erage relaxation raté as well as the mean thermal occupa- towards a general concept for rationalizing the behavior of
tion numbern have been replaced by their classical limits. arbitrary quantum initial states subject to the mean field
The agreement underscores the quasiclassical nature of tErenfest equations of motion. The self-consistent coupling
relaxation process. between the motion of quantum and classical subsystems
suffers from an imbalance in the bidirectional energy flow.
While the quantum system is driven by a time-dependent
V. CONCLUSION interaction operator determined by the positions of classical
In the present work, we have reported on nonequilibriumparticles, the motion of the classical degrees of freedom is
hybrid quantum/classical simulations of the liquid state vi-affected by a quantum-averaged Hellmann-Feynman force,
brational energy relaxation, using a simple model Hamil-i-e., an expectation value calculated from the quantum wave
tonian that captures the essential features of diatomic vibra?acket. As a result, the classical subsystem is correlated to
tional relaxation in liquids while rigorously excluding the evolving quantum state vector only to the extent that the
vibration-rotation pathways of vibration to solvent energy Hellmann-Feynman force is nonstationary under the action
flow. The general aim of this work is to test the performanceof the bare system Hamiltonian. From a statistical mechani-
and statistical mechanical properties of the mean field Ehrerfal perspective, a breakdown of the quantum detailed bal-
fest quantum/classical method for different quantum initialance relationship emerges. However, this breakdown is not
conditions, i.e., coherent vs delocaliz@tabatic eigenstaje complete and depends on the shape of the quantum wave
wave packets, thereby probing the degree of dynamic corrd?acket. From the time derivative of the vibrational energy
lation between quantum and classical subsystems dependenpectation valu¢Hs), accompanied by the Ehrenfest theo-
on the shape of the evolving wave function. Fully classicalrem, it can be shown that within the limits of linear response
simulations are used as a reference, assuming that the clasergy dissipation subject to mean field QCMD is connected
sical rate of relaxation may be used to estimate the exaadb the frictional response of the classical bath to the expec-
guantum rate. tation value of vibrational momentum. In other words, a
Among the various possible quantum initial state vectorslassical-like fluctuation-dissipation theorem holds. As a re-
at a given mean vibrational energy, coherent states ansult, for an arbitrary vibrational quantum initial state, the
eigenstates of the harmonic oscillator represent wave funanean energy may be divided into two parts, one which is
tions of extremely different character. Coherent states are thencoded quasiclassically in terms of the nonstationarity of
most classical-like quantum states that may be constructegosition and momentum expectation values, and one which
Eigenfunctions of the HO Hamiltonian, however, do not pos-is encoded in the nodal structure of the wave function
sess a classical analog. position space A classical bath is within the mean field
While coherent states relax towards a quasiclassical theQCMD method only correlated to the “classical” part of the
mal equilibrium, defined by the bath temperature and thenean energy. The remaining “quantum” part of the excess
classical limit of the mean thermal occupation numberenergy is inert towards dissipation and fluctuation and there-
eigenstates experience unphysical heating towards a statiofore contributes to an effective zero point energy.
ary state where the classical mean thermal en&gdy has It has become clear from our investigations that the MF
been added on top of the initial vibrational energy. An arbi-Ehrenfest quantum/classical method is not reliable for the
trary superposition state intermediate between the coherestmulation of condensed phase vibrational energy relaxation,
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starting from arbitrary quantum initial states. While the gen-chastic Hamiltonian approach to the problem at hand. Work
eral notion of a(partia) breakdown of detailed balance sub- along these lines is currently in progress in our laboratory.
ject to the classical path EOM is not unanticipatedg.,
Refs.[2,18]), we believe that our results provide some in-
sight that may serve as a basis for developing adequate This work was made possible by a generous funding of
quantum/classical approaches to the liquid state vibrationalomputing facilities in our department by the Max-Planck-
energy transfer. The general strategy for improving directGesellschaft. The author is grateful to Professogén Troe
quantum/classical approaches to liquid phase VER beyonf®r his continuous support, as well as to Drrgl&chroeder,
the simple mean field Ehrenfest ansatz therefore demands &f. Dirk Schwarzer and Dr. Anatol Neufeld for helpful dis-
increase of correlation between subsystems, either within th%luasssslﬁ:rs. (%n?r::i\::v;rzrg‘;lesr?cteooskirﬁﬁlr;tlir:);rgs wgligémddg'lgg
TDSCF approximation or starting from more rigorous mul- . . '
ticonfiguration(MC) treatments. Apart from making a dis- like to thank Professor Christof Sciter and Dr. Burkhard

S . . X Schmidt for introducing us to theipiCkAPACK algorithm.
tinction between single-configuration and MC-TDSCF ap-1po help of Dr. Reinhagrd Schinke and especial%/ Dr. Sergy

proaches, increase of correlation may be achieved either ¥ epenshchikov in discussing and implementing a DVR ver-
introducing “classical” features, i.e., stochastic “quantum sjon of the PickAPACK algorithm is hereby gratefully ac-
jumps,” into the quantum time evolution of the system or by knowledged. Last but not least, the author expresses his
introducing approximate quantufeemiclassicaleffects into  gratitude to Professor Gert D. Billing for the hospitality dur-
the evolution of the bath degrees of freedom. From a differing a short visit at the H.C. @rsted Institute, University of
ent perspective, the quantum/classical Langevin equation de€openhagen, where some of the present issues were
rived in this paper may serve as a starting point for a stodiscussed.
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