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Mean field Ehrenfest quantumÕclassical simulation of vibrational energy relaxation
in a simple liquid

Günter Käb*
Max-Planck-Institut fu¨r Biophysikalische Chemie, Am Fassberg 11, D-37077 Go¨ttingen, Germany

~Received 27 March 2002; published 15 October 2002!

We give a detailed account of the statistical mechanical properties of the mean field Ehrenfest quantum/
classical method as applied to liquid phase vibrational energy transfer using a simple harmonic oscillator model
Hamiltonian. Depending on the shape of the initial quantum wave packet, a~partial! breakdown of detailed
balance is observed, where the frictional response of the classical bath is only correlated to quasiclassical
features of the evolving quantum state, i.e., a classical-like fluctuation-dissipation theorem holds. Only in the
case of a coherent initial state~minimum uncertainty wave packet! does the mean field method produce
physically meaningful results, namely, exponential relaxation (t5tcl) towards a quasiclassical equilibrium.
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dy
w
se

th
a
o

t o
a
co
es
gy

ta
c
er
te
o

o
a
ay
ic
e

d
ic
d

d

fte
s
an

r

ion
m/
of

to
dic-
pli-
d-

nd
the
al
ch-
for
r of
ase

um
n
id
in-
lax-

ical

e-
ing
ical
the

e-

D-
n
ave

ble
or

rage
u-

uan-
an
of

ob-
ut
ely,
I. INTRODUCTION

Mixed quantum/classical or semiclassical molecular
namics methods have recently been the subject of rene
and increasing interest especially in the field of conden
phase chemical dynamics@1–8#. Basically, this arises from
the fact that many important chemical processes involve
motion of light particles such as electrons or protons or
ford the inclusion of quantum effects for some degrees
freedom, while at the same time a full quantum treatmen
a many particle system is impossible. Typical examples
electronically nonadiabatic processes such as internal
version@9# or photodissociation in liquids and solid matric
@6,10# or proton/hydrogen transfers in chemistry and biolo
@4,5#. Vibrational energy transfer@VET, vibrational energy
relaxation~VER!# is an elementary process of fundamen
importance in chemical dynamics where quantum effe
may also become important due to the non-negligible z
point energy of high frequency vibrations and the discre
ness of their energy spectra. Moreover, since a quantum
cillator can explore classically forbidden regions of the p
tential energy function—this is often called dynamic
tunneling @11#—, the exact quantum rate of relaxation m
become larger than the rate obtained from a purely class
treatment, despite the discreteness of the quantum en
scale.

Semiclassical methods@8# are usually derived from the
Feynman path integral and, at the highest level, treat all
grees of freedom on an equal footing, namely, semiclass
mechanics. However, at present these methods are limite
short times below and up to'1 ps, while vibrational relax-
ation in the condensed phase takes place on picosecon
nanosecond time scales and beyond.

Hybrid quantum/classical molecular dynamics, herea
denoted by the acronym QCMD, is distinct from semiclas
cal treatments, in that it involves the propagation of a qu
tum wave packet for the quantum degrees of freedom~DOF!,
whereas classical equations of motion are solved for the
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maining DOF. Quantum and classical equations of mot
are solved in a self-consistent manner. Mixed quantu
classical methods have the advantage that the stability
integration schemes allows for longer simulation times up
hundreds of picoseconds, although the shortest time step
tated by the time dependence of quantum probability am
tudes is typically significantly smaller than in a correspon
ing purely classical treatment.

When applying QCMD, one always has to keep in mi
that these methods involve unavoidable approximations,
validity of which must be checked for the specific physic
system under investigation. This is usually done by ben
marking against fully correlated quantum simulations
small to moderately large systems. However, the numbe
model systems mimicking the effects of a condensed ph
environment, which can be solved exactly in a quant
treatment, is limited, e.g., Ref.@12#, and these models ofte
do not contain anharmonic interactions typical for a liqu
solution, as employed in the present study. Here we use
stead the assumption that the quantum rate of energy re
ation may be estimated from a knowledge of the class
rate as described later.

QCMD methods may be divided into two categories d
pending on the level of approximation especially pertain
to the degree of correlation between quantum and class
subsystems. The lowest level of theory is represented by
so-called mean field Ehrenfest~MF! or classical path method
@2,5#, which can rigorously be derived from the singl
configuration time-dependent self-consistent field~TDSCF!
approximation@6,7,13,14#. As a result, it suffers from the
same approximations as involved in the derivation of T
SCF, namely, the~partial! neglect of correlation betwee
subsystems described by separate lower-dimensional w
functions. While the TDSCF and MF methods are applica
to situations with small coupling between subsystems
where the interaction between subsystems is of an ave
type, mean field performs poorly for systems with large co
pling and strong dependence of classical forces on the q
tum state@15#. In general terms, the drawback of the me
field approach arises from the property that the motion
classical degrees of freedom is not correlated to the full pr
ability density or density matrix of the quantum DOF, b
only to an expectation value calculated there from, nam
©2002 The American Physical Society17-1
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GÜNTER KÄB PHYSICAL REVIEW E 66, 046117 ~2002!
an average Hellmann-Feynman-type force.
The molecular dynamics with electronic transitio

method @16#, widely known assurface hopping~SH!, has
been specifically designed to handle this correlation probl
and represents the second class of QCMD schemes. Va
implementations of surface hopping and related approac
have been developed, and an extension to nonadiabatic
sitions between proton states, termed molecular dynam
with quantum transitions@4,17#, has been worked out. A nic
review of SH and related developments may be found in R
@5#.

In this work we apply QCMD to dissipative vibrationa
energy transfer in solution, where we explore the perf
mance and statistical mechanical properties of the mean
Ehrenfest method in nonequilibrium simulations for t
simple model system of a harmonic breathing sphere i
Lennard-Jones fluid at liquid density. Our main goal is
investigate the effect of different quantum initial condition
i.e., coherent state vs delocalized eigenstate, on the dis
tive redistribution of energy between the quantum oscilla
and the classical solvent bath. While for electronically no
diabatic processes the region of strong nonadiabatic coup
is often well localized in position space, in vibrational rela
ation the coupling between diabatic as well as between a
batic states is delocalized in the phase space of classical
ticles and therefore is nonvanishing throughout the cours
a simulation. Thus, we can expect the mean field schem
be a reasonably good starting point for investigations. Ho
ever, it is to be expected that detailed balance is not tre
properly @2,18# and the results obtained will depend on t
shape of the evolving quantum wave packet.

The theoretical treatment of condensed phase vibratio
energy transfer has a long history@19#, which we shall not
trace here in detail. If zero point energy effects may be
glected, a purely classical approach can be used in the
text of equilibrium statistical mechanics~i! to calculate the
mean energy relaxation time from the linear response the
@19,20#, as well as for nonequilibrium simulations and~ii ! to
study in detail the dynamical evolution of energy redistrib
tion, e.g., Refs.@21,22#. In fact, even for high frequency
oscillators the overall energy relaxation may be reasona
described by a classical treatment, although unphysical
point energy loss is unavoidable. In quantum approache
condensed phase VER, perturbational treatments base
the linear response theory still dominate, where state-to-s
transition rates may be calculated from the spectral den
of classical force-force correlation functions@19,20,23#.
When classical correlation functions are employed, the
tailed balance constraint must be invoked explicitly. A cri
cal consideration of the approximations involved
quantum-oscillator/classical-bath approaches has rece
been given by Egorov, Rabani, and Berne@20# in the context
of the perturbational approach. Only recently direct noneq
librium QCMD simulations@23,24# and related treatment
@25# of VER in solution have been reported. However, w
feel that the strengths and weaknesses as well as the sta
cal mechanical consequences of direct nonequilibri
QCMD approaches to dissipative vibrational energy trans
in realistic solvent environments are still poorly understo
04611
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By investigating the statistical mechanical properties of
mean field QCMD scheme we hope to contribute to the
velopment of quantum/classical simulation methodology
the context of condensed phase dissipative vibrational
namics.

Our paper is organized as follows. In Sec. II we give
description of the mean field Ehrenfest method as deri
from the TDSCF approximation. Section III describes o
model Hamiltonian of a harmonic breathing sphere dissol
in a Lennard-Jones liquid and its parametrization as wel
the thermodynamic conditions. We also discuss the propa
tion scheme used to integrate the coupled quantum/clas
equations of motion and its implementation. In Sec. IV w
report and discuss our results obtained from nonequilibri
simulations starting with different quantum initial states a
given mean excess vibrational energy. We also include in
section some of the theoretical considerations which co
have been put into Sec. II, because they are closely tie
the emerging results. Section V concludes by summariz
our key findings.

II. THEORY

In the single-configuration TDSCF@6,13,26# approxima-
tion the full many-dimensional quantum state vectoruC& is
written as a product of single-particle or single-DOF vecto
uw i&, say

uC&5uw1&uw2&, ~1!

and this separability is assumed to hold for all times. Ins
tion of Eq.~1! into the time-dependent Schro¨dinger equation
~TDSE! together with a Hamiltonian of the formĤ5Ĥ1

1Ĥ21Ĥ12 and multiplication from the left bŷ w1u and
^w2u, respectively, leads to a coupled set of one-dimensio
Schrödinger equations

i\uẇ1&5Ĥ ~1!uw1&, Ĥ ~1!5^w2uĤuw2&; ~2!

i\uẇ2&5Ĥ ~2!uw2&, Ĥ ~2!5^w1uĤuw1&; ~3!

i\uĊ&5$Ĥ ~1!1Ĥ ~2!%uC&, ~4!

where we have implicity assumed that^w1uẇ1&5^w2uẇ2&
50, which fixes the phases ofuw1& and uw2& and guarantees
that uw1& and uw2& remain normalized throughout the prop
gation, if normalized initially. From Eq.~4! we recognize
that the time evolution of the full quantum state vectoruC& is
determined by an effective HamiltonianĤ (1)1Ĥ (2) which
differs from the exact one. In a more rigorous derivati
@26#, the total state vector is written as

uC&5a~ t !uw1&uw2&, ~5!

where the complex numbera(t) is introduced to allow for a
free choice of phases of bothuw1& anduw2& at a fixed overall
phase ofuC&. The quantum equations of motion fora(t),
uw1&, and uw2& are then derived from the Dirac-Frenk
variational principle@26,27#,
7-2
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MEAN FIELD EHRENFEST QUANTUM/CLASSICAL . . . PHYSICAL REVIEW E 66, 046117 ~2002!
^dCu H Ĥ2 i\
]

]tJ uC&50, ~6!

resulting in

i\ȧ5^ Ĥ̇&a, ~7!

i\uẇ1&5$Ĥ ~1!2^Ĥ&%uw1&, ~8!

i\uẇ2&5$Ĥ ~2!2^Ĥ&%uw2&, ~9!

i\uĊ&5$Ĥ ~1!1Ĥ ~2!2^Ĥ&%uC&. ~10!

The effective Hamiltonians for propagation of single-partic
vectorsuw1& and uw2& are now given by

Ĥeff
~1!~ t ![$Ĥ ~1!2^Ĥ&%5$Ĥ11^Ĥ12&2%2$^Ĥ1&11^Ĥ12&1,2%,

~11!

Ĥeff
~2!~ t ![$Ĥ ~2!2^Ĥ&%5$Ĥ21^Ĥ12&1%2$^Ĥ2&21^Ĥ12&1,2%.

~12!

Since the phase factors of vectorsuw i& determined by

$^Ĥ i& i1^Ĥ i j & i , j% do not affect the time-dependent expec
tion values calculated fromuw i&, these terms can be omitte
from the uw i& propagation, or in other words shifted to th
time dependence ofa(t). Due to the TDSCF ansatz, the fu
correlation between single-DOF densitiesŝ i5Trj$r̂% is no
longer maintained, wherer̂5uC&^Cu is the total density
operator.

We now formulate the Hamiltonian in a form more su
able to our model system as well as for deriving the me
field Ehrenfest equations of motion, namely,

Ĥ5ĤS1ĤB1ĤSB, ĤS52
\2

2m

]2

]r 2 1US~r !,

ĤB52
\2

2M

]2

]R2 1UB~R!,

ĤSB5V~r ,R!. ~13!

Here, the system HamiltonianĤS corresponds to the energ
of a vibrational degree of freedom denoted byr. The bath
HamiltonianĤB is the sum of kinetic and potential terms fo
the solvent particles, where the variableR collectively repre-
sents the positions of all bath particles$Ra% including the
solute center of mass. The Schro¨dinger equations foruwS&
and uwB& ~omitting unimportant phase factors! read

i\uẇS&5$ĤS1^ĤSB&B%uwS&,

i\uẇB&5$ĤB1^ĤSB&S%uwB&.

For taking the classical limit of the bath equations of motio
uwB& is written as@5#
04611
-

n

,

^RuwB&[wB~R,t !5A~R,t !expH i

\
S~R,t !J , ~14!

whereA(R,t) andS(R,t) are real functions,A2(R,t) is the
quantum probability density in position space andS(R,t) is
the quantum analog of the classical action, the gradien
which determines the momentum. If the so-called quant
potential Q(R,t)52(\2/2M )¹R

2A/A is neglected in the
equation of motion forS(R,t), classical equations of motion
for R(t) andpR(t) are obtained,

Ṙ~ t !5
pR~ t !

M
[vR~ t !, ~15!

ṗR~ t !5M v̇R~ t !52¹R^wSuĤSBuwS&2¹RHB . ~16!

While HB is now a classical function of positions and m
menta for bath particles,ĤSB5ĤSB@R(t)# is still an operator
in r space, where each matrix element is a time-depend
function determined by the positionsR(t) of bath degrees of
freedom. The time evolution of the system state vectoruwS&
is governed by the TDSE

i\uẇS&5$ĤS1ĤSB@R~ t !#%uwS&[Ĥq@R~ t !#uwS&. ~17!

Equations~15! through ~17! are the mean field Ehrenfes
quantum/classical equations of motion for a Hamiltonian
the form specified by Eq.~13!. The mean field Ehrenfest o
classical path method may also be derived, more trans
ently, from a quantum/semiclassical approximation with
the TDSCF ansatz using Gaussian wave packets@2,28#.

The classical path equations correspond to a rigor
quantum/classical limit within the TDSCF approximation f
the total wave function. Quantum and classical degrees
freedom are coupled self-consistently through the tim
dependent operatorĤSB@R(t)# and the ‘‘quantum force’’
FR

qu52¹R^ĤSB&S , respectively, i.e., they can exchange e
ergy. If a diabatic basis, i.e., isolated solute energy eig
functions, or some fixed discrete variable representa
~DVR! grid in position space is used for a representation
the state vectoruwS&, the expression for the quantum forc
simplifies to

FR
qu[2¹R^ĤSB&S52^¹RĤSB&S[FR

HF. ~18!

Equation~18! is of the general form of a Hellmann-Feynma
theorem@29,30#.

Various integration schemes for QCMD simulations ha
been described, see, e.g., Ref.@31#. We have chosen to us
the PICKAPACK algorithm developed by Schu¨tte and co-
workers@32,33#. It has the important property of being sym
plectic and symmetric. When studying energy transfer
molecular dynamics simulation, the conservation of total
ergy and momentum is absolutely essential. Regarding
symplectic property, we mention that the conservation of
tal energy and momentum in mean field QCMD is only d
fined on the level of expectation values, but obviously do
7-3
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GÜNTER KÄB PHYSICAL REVIEW E 66, 046117 ~2002!
not hold on a quantum state-to-state level. This will beco
important later on. ThePICKAPACK propagator consists in th
following subsequent steps:

R0.55R01
pR,0

M

Dt

2
,

uwS&0.55expH 2
i

\
K̂q

Dt

2 J uwS&0 ; ~19a!

pR,15pR,02$^¹RV̂q~r ,R0.5!&0.51¹RHB~R0.5!%Dt,

uwS&15expH 2
i

\
K̂q

Dt

2 J expH 2
i

\
V̂q~r ,R0.5!DtJ uwS&0.5;

~19b!

R15R0.51
pR,1

M

Dt

2
, ~19c!

where subscripts 0, 0.5, and 1 denote dynamical varia
and wave functions at timest, t1Dt/2, andt1Dt, respec-
tively. K̂q is the kinetic energy operator of the quantum
brational degree of freedom, andV̂q„r ,R(t)…[US(r )
1V„r ,R(t)…5ÛS1ĤSB@R(t)# is the sum of solute interna
and solute-solvent potential energy operators according
Eq. ~13!.

Usually, one would switch back and forth between t
position and momentum representation of the quantum s
vector in order to evaluate the split operator kinetic and
tential propagators exactly. Since, however, the momen
representation is of no value to us other than just for do
the kinetic propagation, we use a modified scheme@31#,
where the symmetric splitting of the quantum propagato
done according to

uwS&15expH 2
i

\
ĤS

Dt

2 J expH 2
i

\
ĤSB@R0.5#DtJ

3expH 2
i

\
ĤS

Dt

2 J uwS&0 .

Now the position andĤS eigenfunction~diabatic basis! rep-
resentations can be employed to integrate the mean
Ehrenfest equations of motion. This modifiedPICKAPACK

scheme is also symplectic and symmetric. Although the
termediate state vectoruwS&0.5 is different from the original
formulation, the results obtained are not changed.

Besides the time-dependent expectation values of
various energy terms along a simulated trajectory, the a
lytic computation of the time derivative of energies~power!
and the work terms obtained therefrom by numerical integ
tion, have proven a valuable tool for the mechanistic analy
of energy flow in nonequilibrium simulations of energ
transfer processes@21,22#. In a fully classical mechanica
treatment, the time derivative of the energy~power, capacity!
corresponding to linear types of motion, e.g., translationa
vibrational, is given by@34#
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Nr~ t ![
dEr

dt
5Fr

e
•v r , Fr

e52¹rV~r ,R!. ~20!

Equation~20! is written with the system/bath partitioning o
Eq. ~13! in mind, wherer andR denote the positions of the
system and the bath DOF, respectively. From the tim
dependent capacity~power! Nr(t) the external work done by
the environmental degrees of freedom upon the system
easily be obtained by numerical integration,

Wr
e~ t !5E

0

t

Nr~t!dt. ~21!

The analytical concept of time-dependent capacity
straightforwardly extended to the quantum or quantu
classical domain by using the time dependence of an ex

tation value^V̂& @35#,

d^V̂&
dt

5
i

\
^@Ĥ,V̂#&1K ]V̂~ t !

]t
L , ~22!

where the second term on the right hand side takes acc
of a possible time dependence in the Schro¨dinger represen-
tation. In quantum molecular dynamics capacities are ti
derivatives of the expectation values of Hamiltonian ope
tors. Hence, the relevant capacities for our model quant
classical Hamiltonian are as follows:

d^ĤS&
dt

5
i

\
^@Ĥq~ t !,ĤS#&5

i

\
^@ĤSB@R~ t !#,ĤS#&, ~23!

d^Ĥq~ t !&
dt

5K ]ĤSB@R~ t !#

]t L 5K ]ĤSB@R~ t !#

]R L Ṙ~ t !,

~24!

d^ĤSB@R~ t !#&
dt

52
d^ĤS&

dt
1

d^Ĥq~ t !&
dt

, ~25!

dHB

dt
52K ]ĤSB@R~ t !#

]R L vR~ t !52K dĤq~ t !

dt L . ~26!

In Eqs.~24! and~26! the validity of the Hellmann-Feynman
force has been assumed. Numerical integration of these
lytical expressions gives a corresponding work term acco
ing to Eq. ~21!. The sum of Eqs.~23!, ~25!, and ~26!, or
equivalently the sum of Eqs.~24! and~26!, must be equal to
zero, which can be used to check the conservation of t
energy.

III. MODEL AND SIMULATION PROCEDURE

In the present work we employ the simple model Ham
tonian of a harmonic breathing sphere embedded in
Lennard-Jones fluid at a reduced solvent density%*
[%Ns350.75 to test the performance of the mean fie
quantum/classical approximation against fully classi
simulations for vibrational energy relaxation in solution. F
a solvent Lennard-Jones diameter ofssolv53.405 Å, as used
7-4
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MEAN FIELD EHRENFEST QUANTUM/CLASSICAL . . . PHYSICAL REVIEW E 66, 046117 ~2002!
in the parametrization specified below, the solvent num
density is%N.0.019 Å23.

The precise form of our model Hamiltonian is as follow
The system, i.e., isolated breathing sphere, HamiltonianĤS
is

ĤS52
\2

2m

]2

]r 2 1
kforce

2
~Dr !2, ~27!

wherem is the reduced mass of the quantum vibrational
gree of freedom, andkforce5mv0

2 is the harmonic breathing
sphere force constant given in terms of the reduced mass
vibrational angular frequencyv0 . The meaning of the vibra
tional displacement variableDr will become more transpar
ent below. The solvent bath HamiltonianHB is the sum of
kinetic energiesKi and interaction energiesUi j of solvent
particles with positions and momenta$(RW i ,pW R,i)%,

Hbath5(
i

Ki1(
i , j

Ui j , ~28!

where the solute~breathing sphere! center of mass (RW c ,pW c)
kinetic energy

Kc5
mc

2
uvW cu25

upW cu2

2mc

is included in the sumS iKi . Formally, the reduced massm
and the solute total massmc may be related to the massesm1
andm2 of an effective diatomic solute through

mc5m11m2 , m5
m1m2

mc
.

The specific functional form of solvent-solvent potential e
ergiesUi j is assumed to be of Lennard-Jones 12-6 type,

Ui j ~Ri j !54esolvH S ssolv

Ri j
D 12

2S ssolv

Ri j
D 6J , Ri j 5uRW i2RW j u.

~29!

For the solute-solvent interaction energy, which is equa
the system-bath HamiltonianĤSB in our terminology, we
have chosen a sum of modified Kihara potentials,

^r uĤSBur &5(
j

Uc j~Dr ,Rc j!

5(
j

4eSH S sS

Rc j2aDr D
12

2S sS

Rc j2aDr D
6J ,

~30!

wherea50.5. We note here that our breathing sphere Ham
tonian differs from the one which is frequently used to mo
VER in solution, e.g., Ref.@36#. While the latter model em-
ploys a harmonically breathing solute-solvent Lennard-Jo
diametersS5s01aDr , we identify the vibrational breath
ing sphere coordinate as a fluctuating hard sphere diam
which shifts the interaction energy and force between
04611
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solute center of mass and thei th solvent atom along the
distance axis, but does not change the shape of these f
tions.

According to thePICKAPACK algorithm described in Eq
~19!, the system-bath interaction HamiltonianĤSB@R(t)#
5HSB@r ,R(t)# as well as the forces experienced by the cl
sical degrees of freedom, i.e.,FW c(t) and FW i(t), have to be
evaluated at intermediate timest1Dt/2. From Eqs.~29! and
~30! we get

FW c[2(
j

K ]Uc j@Dr ,Rc j~ t1Dt/2!#

]Rc j
L

t1Dt/2

RW c j

Rc j
5(

j
FW c j ,

FW i[2FW ci2(
j

]Ui j @Ri j ~ t1Dt/2!#

]Ri j

RW i j

Ri j
5FW ic1(

j
FW i j .

~31!

The capacity~power! exerted upon the time-dependent qua
tum Hamiltonian Ĥq(t)5ĤS1ĤSB@R(t)#, as calculated
from Eqs.~24! and ~26!,

d^Ĥq~ t !&
dt

52
dHB

dt
52(

j
FW c j•vW c j , vW c j5vW c2vW j ,

~32!

is determined by the quantum-averaged forcesFW c j upon the
solute center of mass, since all effects of bath internal for
FW i j cancel out.

The time stepDt used to solve the coupled quantum
classical equations of motion may generally be set equa
Dt.0.0132p/v(nmax), where v(nmax)5v0$nmax11/2% is
the angular frequency corresponding to the quantum am
tude of the highest eigenstate ofĤS included in the time
evolved state vector,

expH 2
i

\
ĤS

Dt

2 J uwS&5 (
n50

nmax

expH 2
ivnDt

2 J un&^nuwS&.

In our simulations starting from a mean quantum number
^n̂&55, we setnmax520 to ensure that the amplitudes
coherent wave packets~see below! remain sufficiently small
for n5nmax, resulting inDt.0.1 fs. In practice,Dt values
up to ten times as large may be used without loss of ac
racy, because the main effect of the solvent environment i
shift the vibrational potential energy function vertically~sol-
vation!, while fluctuating changes in the shape of this fun
tion are small.

The parametrization of our model Hamiltonian has be
chosen to meet the conditions used to model ground statI 2
in argon clusters@37#. Parametersm, v0 , mc , eS , sS , msolv,
esolv, ssolv are summarized in Table I. Simulations have be
performed within theNVE ensemble~constant particle num-
ber, volume, and total energy! at average temperatureT
5300 K, resulting in a reduced temperature ofT*
[kBT/esolv52.503. Thus, the thermodynamic condition
specified by%* andT* correspond to a supercritical liquid
like state (T* .Tc* .1.316,%* .%c* .0.304) @38#. The in-
evitable rise of solvent temperature during nonequilibriu
7-5
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GÜNTER KÄB PHYSICAL REVIEW E 66, 046117 ~2002!
energy redistribution in a microcanonical ensemble can
kept within an acceptable range by appropriately adjus
the total heat capacity~system size!. In our case a value o
Nsolv5500 for the number of solvent atoms is enough
achieveDT,5 K.

In order to generate an ensemble of initial conditions
the classical degrees of freedom, we start from a breath
sphere constrained toDr 50, centered in a cubic box an
embedded in a fcc lattice of solvent particles. This config
ration is equilibrated for 100 ps by repeatedly rescaling
locities to the desired target temperature of 300 K. Additio
classical initial conditions are picked up after subsequent
riods of 10 ps length.

For each set of classical initial positions and momenta
bath particles the breathing sphere is prepared with an ex
tation value of five vibrational quanta, where the wave fun
tion corresponds either to a~diabatic! eigenstateun& of ĤS , to
a coherent state specified by@39#

ua&5expH 2
uau2

2 J (
n50

nmax an

An!
un& ~33!

in terms of harmonic oscillator~HO! basis functions, or to a
superposition state intermediate betweenua& and un&. Coher-
ent states are eigenstates of the annihilation operatorâ, i.e.,
âua&5aua& and ^auâ15^aua* , where the coherent stat
parametera determines the initial vibrational phase of th
corresponding HO through

^Dr &a5A \

2mv0
$a1a* %

and

^pr&a52 iAm\v0

2
$a2a* %,

and the mean occupation number is given by^n̂&a
[^auâ1âua&5uau2. The uncertainties in position and mo
mentum space associated with these wave packets are
mal as measured by the product of standard deviatio
s r3spr

5\/2, and thus coherent states are the m
classical-like wave packets that may be constructed.

Ensemble averaging over 50–100 trajectories is typic
sufficient to average out statistical fluctuations. Here we e
ploy an ensemble size of 50 individual quantum/class
time evolutions.

Potential energies and forces are computed for all in
atomic distances below a cutoffRcut equal to four times the
largest Lennard-Jones diameter, which issS in our case. Al-

TABLE I. Mass and interaction parameters for our mod
breathing sphere in a Lennard-Jones fluid.

m
~amu!

v0

~cm21!
mc

~amu!
eS

~cm21!
sS

~Å!
msolv

~amu!
esolv

~cm21!
ssolv

~Å!

63.45 220 253.8 130.3 3.617 39.95 83.3 3.4
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though interaction energies and forces at suchRcut values are
vanishingly small, artificial high frequency components
the spectral density of forces can principally arise from
motion of atoms across the cutoff region. Therefore,
choose to~vertically! shift and smooth potentialsU(R) ac-
cording to

U~R!5ULJ~R!2ULJ~Rcut!2H ]ULJ~R!

]R J
R5Rcut

~R2Rcut!,

~34!

whereULJ(R) is the original Lennard-Jones interatomic p
tential. The resultant forces are thus given by

FR~R![2¹RU~R!52¹RULJ~R!1$¹RULJ~R!%R5Rcut
.
~35!

The modified potentials and forces satisfyU(Rcut)50 and
FR(Rcut)50, respectively.

IV. RESULTS AND DISCUSSION

Among the various possible quantum initial state vect
at a given mean vibrational energy, coherent states
eigenstates of the harmonic oscillator represent wave fu
tions of extremely different character. While coherent sta
are the most classical-like quantum states that may be
structed, eigenfunctions of the HO Hamiltonian do not po
sess a classical analog and a classical vibrational phase
therefore not be assigned. Figure 1 illustrates the three ty
of initial state vectors, namely, coherent, diabatic, and ‘‘
termediate’’ wave packet, in the position space represe
tion.

Before we give a detailed account of the results obtain
from quantum/classical simulations of vibrational energy
laxation for the various quantum initial conditions, we briefl
mention that completely classical simulations using the sa
model Hamiltonian and parameter conditions give stric
exponential energy relaxation with a nonequilibrium rela
ation timetcl>12 ps, which is in accord with the result of

l

FIG. 1. Quantum probability density in position space asso
ated with the three types of quantum initial states at given m
vibrational energy employed in quantum/classical simulations.
7-6
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MEAN FIELD EHRENFEST QUANTUM/CLASSICAL . . . PHYSICAL REVIEW E 66, 046117 ~2002!
linear response treatment using the fluctuating external
vent force correlation function.

A. Mean energy relaxation

In Fig. 2 we compare the ensemble averaged mean vi
tional energy—in terms of the mean occupation num
^n̂&S,B—as a function of time, starting from the differen
quantum initial states. Distinctly different behaviors are o
served: While coherent states relax towards thermal equ
rium, the nature of which will be examined later, eigensta
experience an unphysical heating effect. We note here
this heating effect is not only an ensemble averaged prop
rather it is observed also for individual quantum/classi
trajectories starting from an initial eigenstate, where
mean energy is never allowed to fall below its initial valu
In addition, the coherent state relaxation is—apparentl
nonexponential in time. Table II reports the decay parame
obtained from a biexponential fit of the coherent state ene
decay, wherê n̂&→n̄(v0 ,T) is assumed as the long tim
limit and n̄(v0 ,T) is the quantum statistical mean therm
occupation number. We will see, however, that the appa
nonexponentiality of coherent state energy relaxation is
to a misinterpretation, since the quantum statistical m
thermal occupation number at given bath temperature is
the correct stationary value at long times subject to the m
field Ehrenfest equations of motion~quantum/classical equi
librium!.

Contrary to the coherent state case, an ensemble of
termediate’’ initial superposition states does not relax
wards a physically reasonable equilibrium, although ene
dissipation is observed—in contrast to an ensemble of in

FIG. 2. Quantum/classical ensemble averaged time evolutio
mean vibrational energy~in terms of mean occupation number! for
different quantum initial conditions.

TABLE II. Preliminary analysis of coherent and intermedia
initial state energy relaxation (^n̂&a→quantum statistical equilib-
rium!.

Fit t1 ~ps! t2 ~ps! ^t& ~ps!

Coherent 7.560.4 ~69%! 4961 ~31%! 21
Intermediate 13.760.3 13.7
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eigenstates. The effective vibrational temperature calcula
from ^n̂& t→` at long times and the quantum statistical e
pression forn̄(v0 ,T) is Teff

qu.1090 K. The relaxation to-
wards that long time limit, however, is—to a very goo
approximation—exponential in time~Table II!, and the relax-
ation time obtained is larger than but close to the class
~and quantum! relaxation time.

B. Diabatic level populations

In Figs. 3 and 4, we show the decay of diabatic lev
populations, i.e., the diagonal elements of the density ma
in the basis of HO eigenstates, for the ensembles of cohe
~Fig. 3! vs diabatic initial states~Fig. 4! with an expectation
value of ^n̂&55 at time zero. The analysis reveals that t
quantum/classical ensemble of coherent initial states rela
towards a quasicanonical distribution at long times~see be-
low!, while the ensemble of diabatic initial states does no

For the latter initial conditions it is clearly visible tha
while the initially occupied level (n55) is depopulated, the
levelsn5561 are populated with essentially the same pro
ability at a given time. The same is true forn5562 ~not
shown! and almost true forn5563. Thus, the stochastic
evolution of diabatic level populations in the diabatic initi

of FIG. 3. Diabatic state, i.e., harmonic oscillator eigenstate, po
lations averaged over classical bath initial conditions for coher
initial state.

FIG. 4. The same as Fig. 3, but for diabatic initial state.
7-7
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GÜNTER KÄB PHYSICAL REVIEW E 66, 046117 ~2002!
state case corresponds to~unbiased! ‘‘diffusion’’ in energy
space at early times, affected by the lower bound (n50) of
the Hilbert space of diabatic basis functions at later tim
which naturally explains the heating effect. A more detai
analysis will be given below.

In Fig. 5 is shown the evolution of diabatic level popul
tions for an ensemble of intermediate initial superposit
states, which—as in the coherent case—relaxes towar
quasicanonical distribution.

Figure 6 summarizes the results obtained for the vari
quantum initial conditions by comparing the final level pop
lations att550 ps: Relaxation towards quasicanonical dis
butions for initial superposition states~coherent and interme
diate! with effective vibrational temperatures ofTeff

qu.490
and Teff

qu.1115 K at t550 ps, respectively; diffusion in en
ergy space for a diabatic initial state. Thus, in the latter ca
a breakdown of detailed balanceclearly emerges as a cons
quence of the mean field Ehrenfest quantum/classical e
tions of motion. The same applies, to some extent, also to
intermediate-type initial superposition state. This will b
come more clear, when we analyze the nature of quant
classical equilibrium.

Considering the basic ingredients of the mean field Ehr
fest equations of motion~EOM!, our results described so fa

FIG. 5. The same as Fig. 3, but for intermediate initial super
sition state.

FIG. 6. Diabatic level populations att550 ps for different quan-
tum initial conditions.
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may be explained as follows. Molecular friction is a corre
tion effect, i.e., it emerges from a backreaction of the b
degrees of freedom upon the motion of the relevant sys
DOF, where—under the quantum/classical EOM—the cl
sical environmental DOF monitor the motion and ener
content of the quantum system only via an expectation va
i.e., a Hellmann-Feynman-type force. This is schematica
illustrated in Fig. 7. As a result, energy dissipation can with
a mean-field-type quantum/classical approach only arise
the mean energy content of the quantum subsystem rev
itself at least to some extent through a dynamic evolution
expectation values associated with the quantum system u
the action of the bare system HamiltonianĤS . While this is
true for superposition states constructed from eigenstate
ĤS , it is definitely not for the eigenstates themselves. Mo
specifically, for a coherent state, i.e., a minimum uncertai
wave packet, the expectation value of energy is comple
defined through the expectation values of position and m
mentum which move in time as in classical mechanics.
an eigenstate ofĤS , however, the energy is exclusively en
coded in the shape of the wave function, i.e., its nodal str
ture, which has little effect on the Hellmann-Feynman for
Arbitrary ~intermediate! superposition states are located i
between the two limiting cases, i.e., part of the mean ene
is encoded in terms of nonstationary expectation values
part of it is encoded in the nodal structure of the wave fu
tion ~see Fig. 1!.

C. Heisenberg uncertainty relation

Since the way, how the mean energy^ĤS& is encrypted in
the shape of the system wave function, is tied to the delo
ization in position space, we might expect that the dynam
evolution of mean energy relaxation, i.e., the energy rel
ation time~s!, is affected by the uncertainty in position~and
momentum! space at time zero as well as its dynamic ev
lution averaged over the quantum/classical ensemble. A n
ral starting point for investigating this perspective is t
Heisenberg uncertainty relation,

sDrsp>
\

2
, ~36!

where the equality sign holds for coherent~minimum uncer-
tainty! wave packets. Figure 8 shows the quantum/class

-

FIG. 7. Illustration of interactions between quantum and clas
cal degrees of freedom in our model system according to the m
field Ehrenfest ansatz.
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MEAN FIELD EHRENFEST QUANTUM/CLASSICAL . . . PHYSICAL REVIEW E 66, 046117 ~2002!
ensemble averaged evolution ofsDrsp as a function of time
for the coherent initial state case. An increase of the un
tainty product is observed which amounts to'4% occurring
on a time scale oft.10 ps, which is on the order of th
classical energy relaxation timetcl>12 ps.

For an eigenstate of the HO Hamiltonian with quantu
number n the uncertainty product is equal tosDrsp
5\ (n1 1

2 ). Here, an increase is also observed~not shown!,
which is, however, below 1%. As Fig. 6 implies, the increa
of the uncertainty product is due to the population of high
excited vibrational states. Thus, ensembles of coheren
diabatic quantum initial states are relatively stable with
spect to a relative increase of the uncertainty product.

Figure 9 shows the ensemble averaged evolution
sDrsp for the intermediate initial state case. Here, the unc
tainty product amounts tosDrsp.2.4 \ at t50 and a rela-
tive increase of'23% is observed on a time scale oft
.10 ps, while at later timessDrsp decreases again, as o
served for an ensemble of coherent initial states~Fig. 8!.

If we would assume that the dynamic growth of unc
tainty in position space will affect the time scale of ener
relaxation subject to the mean field quantum/classical E
then we would be forced to expect nonexponential ene
relaxation for the ensemble of intermediate superposi

FIG. 8. Quantum/classical ensemble averaged time evolutio
position-momentum uncertainty product~in units of\! for coherent
initial state.

FIG. 9. The same as Fig. 8, but for intermediate initial state.
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states, which is, however, not observed. Considering the
herent initial state case, we are led to the conclusion
the—artifactual—nonexponential relaxation cannot be due
the observed small dynamic increase ofsDrsp .

D. Breakdown of detailed balance

To theoretically investigate the approach towar
quantum/classical equilibrium, it is convenient to start with
Pauli quantum master equation~QME! @39#,

dpn

dt
52H(

m
kn→mJ pn1(

m
km→npm , ~37!

for the ~diabatic! level populationspn , where the state-to-
state rate coefficientskm→n have to satisfy the detailed ba
ance constraint

kn→m

km→n
5S pm

pn
D

eq

[expH 2
DEmn

kBTbath
J ,

in order to drive an arbitrary initial population of energ
levels towards the correct thermal equilibrium distributi
defined by the bath temperature.

A complete neglect of detailed balance, as apparently
served in Sec. IV B at early times for the diabatic level pop
lations starting from an ensemble of diabatic initial sta
~‘‘diffusion’’ in energy space!, would ultimately lead to a
uniform distribution among the energy states characteri
by an effective temperature ofTeff→`. To investigate
whether this is the asymptotic limit for diabatic initial stat
subject to the mean field quantum/classical EOM, and
establish a connection between the quantum state-to-
rates and the classical rate of energy relaxation, we use
golden rule@35,40# assuming that the dissipative effect of th
system-bath interaction can be treated by the first-order
turbation theory.

According to the golden rule expression in the time d
main,

km→n5
1

\2 E
2`

1`

dteivmnt^V̂mn~ t !V̂nm~0!&qB , ~38!

the state-to-state rate coefficient is proportional to the F
rier transform of a quantum-bath correlation function, eva
ated at the transition frequencyvmn5vm2vn . The term
V̂mn(t) is a matrix element in the~diabatic! system basis

$un&% of the system-bath interactionĤSB5V̂int in the interac-
tion picture. Sincê V̂mn(t)V̂nm(0)&qB is a complex-valued
function of time, it cannot be directly substituted by the cla
sical real-valued function̂Vmn(t)Vnm(0)&cl . Direct replace-
ment of^V̂mn(t)V̂nm(0)&qB by the classical correlation func
tion leads to neglect of detailed balance from the start.
described by Oxtoby and by Okazaki@41,23#, one way to
circumvent this problem while using the classical correlat
function is to employ the detailed balance relationship
tween km→n and kn→m , and to exploit the properties o
quantum mechanical correlation functions@40#, yielding

of
7-9
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GÜNTER KÄB PHYSICAL REVIEW E 66, 046117 ~2002!
km→n5
1

\2

2

11e2b\vmn E
2`

1`

dteivmnt

3^ 1
2 @V̂mn~ t !,V̂nm~0!#1&qB , ~39!

where the symmetrized quantum correlation function may
replaced by its classical analog^Vmn(t)Vnm(0)&cl . The pre-
factor in Eq. ~39! contains the detailed balance constra
e2b\vmn5kn→m /km→n , whereb51/kBT. By assuming that
V̂int is linear or almost linear in the oscillator displaceme
D r̂ , i.e., Vmn(t).2Fr

e(t)Dr mn , we arrive at the expressio

km→n.
1

\2

2uDr mnu2

11e2b\vmn E
2`

1`

dteivmnt^Fr
e~ t !Fr

e~0!&cl

~40!

for the state-to-state rate coefficients in terms of a fluctua
external force correlation function̂Fr

e(t)Fr
e(0)&cl . If and

only if we employ the linearity ansatz forĤSB5V̂int can we
establish a connection betweenkm→n and the classica
frequency-dependent friction coefficient. The matrix e
mentsDr mn allow for single-quantum transitions only, an
the rate constants starting from leveln can be brought into
the simple form

kn→n115K̄n̄~n11!5k0→1~n11!, ~41!

kn→n215K̄~ n̄11!n5k1→0n, ~42!

whereK̄ is the average rate of energy relaxation andn̄ de-
notes the mean thermal occupation number. Detailed bala
is incorporated through

kn→n11

kn11→n
[

k0→1

k1→0
5

n̄

n̄11
[e2b\v0, n̄5$eb\v021%21.

The quantum average rate constant of energy relaxatio
related to the classical rate through

K̄[K̄qu5
kBTbath

\v0~ n̄11/2!
K̄cl ~43!

where the classical rate coefficient, which is equal to
frequency-dependent friction coefficient atv5v0 , is in turn
related to the external force correlation function via
fluctuation-dissipation theorem@42#,

K̄cl[g~v0!5
1

mkBT E
0

`

dt cos~v0t !^Fr
e~ t !Fr

e~0!&cl .

~44!

In this simplified treatment we neglect the frequency sh
Dv induced by the average static effect of the solvent en
ronment. The quantum prefactor in Eq.~43! defining the ra-
tio K̄qu/K̄cl is nothing but the ratio of the classical mea
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thermal energy of a vibrational DOF vs the quantum sta
tical mean energy of the same oscillator at a given bath t
perature. This ratio cannot become larger than unity, whic
a consequence of the linearity ansatz forĤSB used in the
derivation. If multiquantum transitions become importa
i.e., the linearity ansatz breaks down, the relation implied
Eq. ~43! does no longer hold. However, our results obtain
from quantum/classical simulations seem to justify the l
earized treatment described above. In fact, the param
conditions of our model system were chosen such as to
tain a suitably short energy relaxation time as a result of
relatively small vibrational frequency~energy level spacing!.
Thus, by construction the quantum energy level spacing
located in the frequency regime where the external fo
spectral density is still large, and it is sufficient to keep t
dominant linear term only in the expansion ofĤSB ~see the
discussion in Ref.@20#!.

In order to see how the neglect of detailed balan
emerges, and to theoretically predict the resultant energy
crease induced by the bath fluctuations, we write the lin
rate equation for the expectation value of the number op
tor ^n̂&, as may easily be derived from the Pauli QME, in t
form

d^n̂&
dt

52~k1→02k0→1!^n̂&1k0→1[2K̄$^n̂&2n̄~v0 ,T!%,

~45!

where (k1→02k0→1)5K̄ andk0→15K̄ n̄. Breakdown of de-
tailed balance is equivalent to neglecting unity againstn̄, i.e.,
settingk1→05k0→1 . In the same sense, we have to negl
the zero point energy in the denominator of the quant
prefactor@Eq. ~43!#. As a result, we arrive at the following
expressions:

K̄[
kBT

\v0n̄
g~v0!, ~46!

k1→05k0→1[K̄n̄5
kBT

\v0
g~v0!. ~47!

For later reference, we note that the precise relation ofn̄ to
frequency and temperature is unimportant for the determ
tion of k0→1 , becausen̄ cancels by Eqs.~46! and~47!. From
Eqs.~45!–~47! we see, that neglecting detailed balance lea
to a linear increase of energy of the quantum vibratio
degree of freedom, the slope being equal tok0→1 . In this
limit, the ratio of k0→1 vs the classical damping rateg(v0)
is nothing but the classical limit of the mean thermal occ
pation number~assumingb\v0!1), implying that within a
time t5tcl the energy increases bykBT.

In Fig. 10 we compare this prediction to the results
mean field Ehrenfest simulations starting from an ensem
of diabatic eigenstates. Instead of anunboundedlinear en-
ergy growth, we observe acontrolled, exponential-type in-
crease of vibrational energy. Comparison to a Pauli QM
simulation with the same number of HO basis states as u
7-10
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MEAN FIELD EHRENFEST QUANTUM/CLASSICAL . . . PHYSICAL REVIEW E 66, 046117 ~2002!
in the QCMD simulations (nmax520) clearly illustrates tha
the saturation observed via QCMD is not due to a trunca
of basis, which has, of course, been taken care of in
quantum/classical treatment. Thus, the slower-than-lin
energy increase obtained by QCMD must be due to an ev
ing dynamic correlation between quantum and classical s
systems as a result of the quantum system being driven
a coherence by the classical bath. We will come back to
issue.

E. QuantumÕclassical Langevin equation

In order to provide a basis for understanding the cohe
state relaxation subject to the mean field Ehrenfest equat
of motion, we derive in this section a quantum/classi
Langevin equation for the coherent state parametera(t) de-
fining a minimum uncertainty wave packet for the harmo
breathing sphere vibrational degree of freedom. The sm
relative increase of the ensemble averaged uncertainty p
uct observed in Sec. IV C, when starting from a coher
state initial wave packet, justifies the assumption that
evolving state vector may be fixed touwS(t)&5ua(t)&. As
stated by Eq.~33!, a coherent stateua(t)& of the harmonic
oscillator is a special superposition state constructed f
HO basis statesun&,

ua~ t !&5expH 2
uau2

2 J (
n

an

An!
un&, âua&5aua&,

^auâ15^aua* .

Coherent states are eigenstates of the annihilation operatâ,
where the coherent state parametera is the eigenvalue. The
fact thata(t)5^â&a is related via

a~ t ![^â&a5
1

&
HAmv0

\
^D r̂ &a1 i

^ p̂r&a

Am\v0
J , ~48!

ua~ t !u2[^â1â&a5^n̂&a ~49!

FIG. 10. Comparison of the energy growth obtained by me
field QCMD for a diabatic initial state to the results of a quantu
master equation analysis assuming a complete neglect of det
balance.
04611
n
e
r-
v-
b-
to
is

nt
ns
l

ll
d-
t
e

m

to the expectation values of position and momentum, as w
as to the expectation value of the number operator, whic
a measure of energy, facilitates the derivation of a quant
classical Langevin equation~LE! for a(t) from the equations
of motion for ^D r̂ &a and ^ p̂r&a . From this LE, a rate equa
tion may, in turn, be derived for̂n̂&. According to the Ehren-
fest theorem@43#, the expectation values of position and m
mentum are governed by the classical Newtonian equat
of motion,

d^D r̂ &
dt

5
^ p̂r&
m

,

d^ p̂r&
dt

52mv0
2^D r̂ &1^F̂r

e&, F̂̇ r
e52¹r ĤSB@R~ t !#.

~50!

Equations~50!, except for the classical time dependence
F̂r

e@R(t)#, are exact irrespective of whether a fully correlat
or approximate total many-particle wave function is e
ployed. From these equations a generalized Langevin e
tion ~GLE! or approximate ordinary LE may be easily o
tained@42#,

dDr

dt
5

pr

m
,

dpr

dt
52mv0

2Dr 2E
0

t

g~t!pr~ t2t!dt1dFr
e~ t !

.2mv0
2Dr 2g~v0!pr~ t !1dFr

e~ t !, ~51!

where expectation values have been replaced by their cla
cal analogs. The time-dependent friction kernelg(t) is re-
lated to the fluctuating force correlation function through

g~ t !5
1

mkBT
^dFr

e~ t !dFr
e~0!&, ~52!

where we recall thatdFr
e(t) is to be understood as a quantu

expectation value, the time dependence of which is exc
sively due to random fluctuations of the~classical! bath. The
approximate ordinary LE form stated by Eq.~51! is facili-
tated when transforming from time- to frequency-depend
friction, Eq. ~44!, using the fact that a harmonic oscillato
has associated with it a precise, energy-independent tim
frequency scale,v052p/tvib . Using Eq.~48!, we arrive at
the quasiclassical LE for the coherent state parametera(t),

da

dt
52 iv0a2

g~v0!

2
$a2a* %1

i

&

dFr
e~ t !

Am\v0

. ~53!

Either from the latter or, more directly, from the Pauli mas
equation, we obtain a rate equation, Eq.~45!, for the mean
occupation number̂n̂& in the quasiclassical limit,

d^n̂&a

dt
52K̄$^n̂&a2n̄a%→2g~v0!H ^n̂&a2

kBT

\v0
J ,

n

led
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GÜNTER KÄB PHYSICAL REVIEW E 66, 046117 ~2002!
where, in the classical limit,

b\v0!1→K̄5K̄cl , n̄5
kBT

\v0
. ~54!

Note that Eq.~53! and also Eq.~54!, when derived from Eq.
~53!, is exact within the mean field Ehrenfest framework,
the extent that the linear response theory holds and the w
packet is identical to a coherent state throughout
quantum/classical time evolution. The essence of this re
is that an ensemble of coherent states must relax towar
quasiclassical equilibrium subject to the mean field quant
classical EOM, irrespective of whether or not the ra
\v0 /kBT facilitates a rigorous justification, the reason bei
that the bath fluctuations are described classically. For
sons of consistency with the corresponding class
fluctuation-dissipation theorem the energy relaxation ti
must then be equal to the classical relaxation timetcl .

In Fig. 11 we compare this prediction to our QCMD sim
lation results while fixing the long time limit of the mea
occupation number to its classical value,̂n̂& t→`

→kBT/\v0 . The result of a quasiclassical Pauli QME sim
lation (t5tcl , n̄5kBT/\v0) is also shown. The approac
towards quasiclassical equilibrium is indeed exponential
good approximation, the relaxation time being very close
the classical one~Table III!. We honestly note here that th
quantum prefactor, Eq.~43!, is close to unity~.0.917! for
the model system chosen here, and therefore the quan

FIG. 11. Coherent initial state energy decay towards quasic
sical equilibrium~see Table III! as compared to quasiclassical Pa
QME simulation (t5tcl , n̄5kBT/\v0).

TABLE III. Fit parameters for coherent, diabatic, and interm
diate initial state energy relaxation towards quantum/classical e
librium.

Fit t1 ~ps! ^t& ~ps!

Coherent 12.360.5 12.3
Diabatic 1761 17
Intermediate 1161 11
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relaxation time istqu.13.1 ps>tcl . So, our numerical resul
for coherent state relaxation is just in between the class
and the quantum relaxation time. We expect, however,
more extensive averaging over classical initial conditio
will drive the numerical value more close to the classic
limit. Comparison to the result of a quasiclassical Pauli QM
simulation shows that the agreement is reasonably good
statistical fluctuations have not been eliminated complet
In summary, the only quantum effect that remains, wh
simulating energy dissipation starting from an ensemble
coherent initial states of a HO immersed in a classical b
using the mean field Ehrenfest or classical path method
the zero point energy constraint.

The statistical mechanical properties of the mean fi
quantum/classical equations of motion emerging from the
vestigation of coherent state energy relaxation, lead us
more or less straightforward interpretation of our QCM
simulation results obtained for ensembles of initial eige
states and intermediate superposition states, respectivel
generalizing the coherent state results to arbitrary ini
wave packets.

From an analysis of the quantum/classical equation
motion for the relevant system~vibrational! energy^ĤS&, we
can show that in the linear response regime a classical-
fluctuation-dissipation theorem holds. The time derivative

^ĤS& is given by@see Eq.~23!, Sec. II#

d^ĤS&
dt

[
i

\
^@Ĥq~ t !,ĤS#&5

i

\
^@ĤSB@R~ t !#,K̂S#&

5H i\

2m
^¹ r

2ĤSB@R~ t !#&1^F̂r
e@R~ t !#• v̂ r&J , ~55!

whereF̂r
e@R(t)#52¹r ĤSB@R(t)# and v̂ r5 p̂r /m. In the lin-

ear response regime we make use of the assump
ĤSB@R(t)#.2F̂r

e@R(t)# r̂ , and thus the external force oper

tor F̂r
e@R(t)#.Fr

e@R(t)# becomes a classical function depe
dent on the positions of bath particles only and the seco
derivative term¹ r

2ĤSB@R(t)# vanishes. As a result, we en

up with a classical-like expression for the^ĤS& equation of
motion @see Eq.~20!, Sec. II#

d^ĤS&
dt

.Fr
e@R~ t !#

^ p̂r&
m

5Fr
e@R~ t !#

d^D r̂ &
dt

. ~56!

By the Ehrenfest theorem@Eq. ~50!# the^ p̂r& and^D r̂ & equa-
tions of motion are analogous to the classical mechan
expressions, from which a quasiclassical Langevin equa
@Eq. ~51!# may be derived using the linear response ans
The essence of Eq.~56! is that energy dissipation of a quan
tum oscillator subject to the mean field Ehrenfest equati
of motion is connected to the frictional response of the cl
sical bath to the motion of the quantum wave packet rep
sented by the expectation value of momentum~and position!
only.
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In the classical path method the classical subsystem m
tors the state of the quantum system through an expecta
value, namely, the Hellmann-Feynman force of Eq.~18!. As
a result, an excess energy of the quantum subsystem
coded in the wave function, is detected by the classical
vironment only to the extent that it expresses itself by way
a nonstationarity of the Hellmann-Feynman force under
action of the system HamiltonianĤS . A coherent state of the
harmonic oscillator is a Gaussian wave packet of minim
uncertainty, where the expectation values of position a
momentum, which move as their classical counterparts
stated by the Ehrenfest theorem, Eq.~50!, completely define
the expectation value of energy in terms of the coherent s
parametera(t), Eqs.~48! and~49!. In this sense, a coheren
state wave function of the HO represents a quasiclass
quantum state. It therefore seems natural to define, fo
arbitrary quantum state of the harmonic oscillator, a re
ence coherent state that has the same expectation valu
position and momentum associated with it as the actual w
packet,

a ref~ t ![
1

&
HAmv0

\
^D r̂ &1 i

^ p̂r&

Am\v0
J . ~57!

The reference energy calculated from these expectation
ues,^n̂& ref(t)[ua ref(t)u2, then corresponds to that part of th
actual mean energy, which is detected by the classical e
ronment. The remaining part,D^n̂& inert[^n̂&(t)2^n̂& ref
5const, is ‘‘inert’’ with respect to energy dissipation in
classical bath and therefore contributes to aneffectivezero
point energy.

For a coherent state, the reference state is identical to
actual state, i.e.,D^n̂& inert,a[0. In the initial eigenstate cas
~quantum numbern0), ^n̂& ref,n0

(t50)[0. Therefore, the to-

tal initial mean energy is inert,D^n̂& inert,n0
[^n̂&n0

(t50)

5n0 , and the initially occupied eigenstate is identical to t
effectivezero point level. As mentioned earlier, this is ev
dent from the behavior of individual quantum/classical t
jectories, subject to the mean field equations of motion.

In our simulations starting from an intermediate super
sition state,

uwS~ t50!&5A1
4 un021&1A1

2 un0&1A1
4 un011&,

a ref~ t50!5
1

2 HAn0

2
1An011

2 J .1.657,

^n̂& ref~ t50!5 1
4 $n01 1

2 1An0~n011!%.2.744, n055,

and the inert part of the mean occupation number
D^n̂& inert5n02^n̂& ref(t50).2.256. This isalmost exactly
the lower bound of mean energy which is observed for in
vidual quantum/classical trajectories starting from the int
mediate superposition state.
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In Fig. 12 we analyze the decay of ensembles of init
eigenstates and intermediate coherences, respectively
wards the assumed quantum/classical equilibrium introdu
above, i.e., ^n̂&→n01kBT/\v0 and ^n̂&→D^n̂& inert
1kBT/\v0 . In both cases, relaxation is exponential to
good approximation, where the relaxation time obtained
the intermediate initial state case is reasonably close to
classical energy relaxation time~Table III!. The diabatic ini-
tial state case can be understood in terms of a quasiclas
heating of an initially ‘‘cold’’ oscillator induced by the clas
sical bath. The numerically obtained relaxation time, ho
ever, is too large as compared totcl . The question, whethe
this is merely a result of limited statistics or resultant fro
the effect of the delocalized wave function upon t
Hellmann-Feynman forceFR

HF52^¹RĤSB@R(t)#&, must be
left open. Comparison to the result of a quasiclassical P
QME simulation (t5tcl , n̄5kBT/\v0 , Fig. 12! taking ac-
count of the inert part of vibrational excess energy, howev
suggests that both diabatic and intermediate initial state
ergy relaxation within the QCMD approximation are cons
tent with a quasiclassical picture of the relaxation proce
while statistical convergence has not yet been achieved.

Let us note here that our procedure of defining ‘‘qua
classical’’ and ‘‘quantum’’ parts of the mean energy of
quantum oscillator can at most be approximately applica
only, because the classical bath does not ‘‘observe’’ the
pectation value of the HO displacement but the expecta
value of F̂R

e52¹RĤSB@R(t)#, which may only approxi-
mately be linear inD r̂ .

F. Approach to quasicanonical equilibrium

In the preceding section we have seen that the mean
ergy relaxation of a quantum oscillator in a classical b
subject to the classical path equations of motion can be
derstood in terms of a quasiclassical relaxation, where on
fraction of the total mean energy, which is ‘‘stored’’ quas
classically in the evolving quantum wave packet, is subj
to dissipation and fluctuation in a classical environment.

On the level of diabatic state populations, the quasicla
cal relaxation process just described quite obviously can
lead to a canonical structure of the equilibrium level dist

FIG. 12. Initial eigenstate and intermediate initial state ene
relaxation towards quantum/classical equilibrium~see Table III! as
compared to quasiclassical Pauli QME simulation (t5tcl ,n̄
5kBT/\v0).
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GÜNTER KÄB PHYSICAL REVIEW E 66, 046117 ~2002!
butions for arbitrary quantum initial states. When part of t
quantum mean energy is inert, and therefore contribute
the effectivezero point energy~ZPE! under the mean field
quantum/classical EOM, the populations of levels below
effective ZPE do not lend themselves to a proper phys
interpretation. This is immediately evident in the diaba
initial state case~Fig. 6 in Sec. IV B!. However, even for an
intermediate superposition state, where part of the total m
energy is inert towards dissipation, the final equilibrium d
tribution closely resembles a canonical one~Fig. 6!.

In this section, we investigate the approach to quantu
classical equilibrium by exploiting the special properties
the harmonic oscillator equilibrium distribution function. A
a global measure of the evolving quantum state distribu
$pn% we use the nonequilibrium~information! entropy

S~ t !52(
n

pn ln pn[ lnNeff~ t ! ~58!

defined in terms of the dynamically evolving diabatic sta
populations pn(t)5rnn(t), instead of using S(t)5
2Tr$r̂S ln r̂S% @39,42#. The identity S(t)5 ln Neff(t) is em-
ployed for the sake of an intuitive physical picture of t
nonequilibrium entropy, defining a reference distributi
whereNeff states are equally populated. At canonical equil
rium characterized by the temperature parameterb51/kBT,
the populations of HO energy eigenstates are given by@39#

pn5S n̄

n̄11D n 1

n̄11
5e2nb\v0$12e2b\v0%, ~59!

wheren̄ is the mean thermal occupation number. Note tha
quantum/classical equilibriumn̄ has to be replaced by it
classical limit. Due to the specific dependence ofpn on n̄ at
canonical equilibrium, the information entropy may be sole
expressed in terms of the mean occupation number,

Scanonical~ t !5~^n̂&11!ln~^n̂&11!2^n̂& ln^n̂&,

Ncanonical~ t !5
~^n̂&11!^n̂&11

^n̂&^n̂& , ~60!

where we have replaced the stationary valuen̄ by its dy-
namic analoguên̂&. Thus, whenever the exact informatio
entropy, in terms of state populations, is equal or close to
canonical reference entropy, given in terms of the mean
cupation number, may we assign an effective temperatur
the relaxing ensemble, where^n̂& may or may not be station
ary. The relaxation towards a quasicanonical distribution
be described via the decay ofDS(t)[S(t)2Scanonical(t) or
DNeff(t)[Neff(t)2Ncanonical(t).

Figures 13~a! QCMD, 13~b! Pauli QME treatment, and 14
show the relaxation of level distributions$pn% towards qua-
sicanonical equilibrium for quantum/classical ensembles
coherent and intermediate initial states, respectively. W
the time scales are approximately equal in both casest
.4.5 ps), we note that only in the coherent state cas
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numerically exact equivalence to a canonical distribution
obtained at long times. In the intermediate superposit
state case a small but notable difference between exact
canonical reference distributions remains even at long tim
This is in accord with our notions stated above regarding
nature of quantum/classical equilibrium for arbitrary qua
tum initial states.

FIG. 13. Approach to quasicanonical equilibrium for cohere
initial state;~a! QCMD results,~b! quasiclassical Pauli QME simu
lation.

FIG. 14. The same as Fig. 13, but for intermediate initial st
~QCMD results only!.
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MEAN FIELD EHRENFEST QUANTUM/CLASSICAL . . . PHYSICAL REVIEW E 66, 046117 ~2002!
In Fig. 15 we compare the decay of level populations
the coherent state case obtained by QCMD and by a P
master equation treatment, where—as in Fig. 13~b!—the av-
erage relaxation rateK̄ as well as the mean thermal occup
tion numbern̄ have been replaced by their classical limi
The agreement underscores the quasiclassical nature o
relaxation process.

V. CONCLUSION

In the present work, we have reported on nonequilibri
hybrid quantum/classical simulations of the liquid state
brational energy relaxation, using a simple model Ham
tonian that captures the essential features of diatomic vi
tional relaxation in liquids while rigorously excludin
vibration-rotation pathways of vibration to solvent ener
flow. The general aim of this work is to test the performan
and statistical mechanical properties of the mean field Eh
fest quantum/classical method for different quantum ini
conditions, i.e., coherent vs delocalized~diabatic eigenstate!
wave packets, thereby probing the degree of dynamic co
lation between quantum and classical subsystems depen
on the shape of the evolving wave function. Fully classi
simulations are used as a reference, assuming that the
sical rate of relaxation may be used to estimate the e
quantum rate.

Among the various possible quantum initial state vect
at a given mean vibrational energy, coherent states
eigenstates of the harmonic oscillator represent wave fu
tions of extremely different character. Coherent states are
most classical-like quantum states that may be construc
Eigenfunctions of the HO Hamiltonian, however, do not po
sess a classical analog.

While coherent states relax towards a quasiclassical t
mal equilibrium, defined by the bath temperature and
classical limit of the mean thermal occupation numb
eigenstates experience unphysical heating towards a sta
ary state where the classical mean thermal energykBT has
been added on top of the initial vibrational energy. An ar
trary superposition state intermediate between the cohe

FIG. 15. Time evolution of diabatic state populations for coh
ent initial state as compared to a quasiclassical QME simula

@K̄5K̄cl , n̄5kBT/\v0 ; see Fig. 13~b!#.
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state and eigenstate limits relaxes towards a stationary
semble, where only part of the initial excess energy has b
dissipated into the classical bath.

In order to provide a basis for the rationalization of phy
cal artifacts produced by the mean field quantum/class
equations of motion, two limiting theoretical cases have be
examined:~i! the complete breakdown of detailed balan
using a Pauli master equation analysis and~ii ! the relaxation
of a coherent state wave packet using a quantum/clas
Langevin equation~LE! derived from the QCMD equation
of motion.

The results show that a complete breakdown of deta
balance, leading to a linear energy increase induced by
classical bath fluctuations, is not an adequate model for
derstanding the initial eigenstate case. Rather, an in
eigenstate is driven into a coherence via the system-bath
teraction, thereby increasing the system-bath correlation
classical dynamical sense, which in turn leads to a contro
energy growth. The quantum/classical Langevin equation
the other hand, adequately describes the quasiclassical r
ation of an ensemble of coherent initial states.

The success of the quantum/classical LE ansatz po
towards a general concept for rationalizing the behavior
arbitrary quantum initial states subject to the mean fi
Ehrenfest equations of motion. The self-consistent coup
between the motion of quantum and classical subsyst
suffers from an imbalance in the bidirectional energy flo
While the quantum system is driven by a time-depend
interaction operator determined by the positions of class
particles, the motion of the classical degrees of freedom
affected by a quantum-averaged Hellmann-Feynman fo
i.e., an expectation value calculated from the quantum w
packet. As a result, the classical subsystem is correlate
the evolving quantum state vector only to the extent that
Hellmann-Feynman force is nonstationary under the ac
of the bare system Hamiltonian. From a statistical mecha
cal perspective, a breakdown of the quantum detailed
ance relationship emerges. However, this breakdown is
complete and depends on the shape of the quantum w
packet. From the time derivative of the vibrational ener
expectation valuêĤS&, accompanied by the Ehrenfest the
rem, it can be shown that within the limits of linear respon
energy dissipation subject to mean field QCMD is connec
to the frictional response of the classical bath to the exp
tation value of vibrational momentum. In other words,
classical-like fluctuation-dissipation theorem holds. As a
sult, for an arbitrary vibrational quantum initial state, th
mean energy may be divided into two parts, one which
encoded quasiclassically in terms of the nonstationarity
position and momentum expectation values, and one wh
is encoded in the nodal structure of the wave function~in
position space!. A classical bath is within the mean fiel
QCMD method only correlated to the ‘‘classical’’ part of th
mean energy. The remaining ‘‘quantum’’ part of the exce
energy is inert towards dissipation and fluctuation and the
fore contributes to an effective zero point energy.

It has become clear from our investigations that the M
Ehrenfest quantum/classical method is not reliable for
simulation of condensed phase vibrational energy relaxat

-
n
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GÜNTER KÄB PHYSICAL REVIEW E 66, 046117 ~2002!
starting from arbitrary quantum initial states. While the ge
eral notion of a~partial! breakdown of detailed balance su
ject to the classical path EOM is not unanticipated~e.g.,
Refs. @2,18#!, we believe that our results provide some i
sight that may serve as a basis for developing adeq
quantum/classical approaches to the liquid state vibratio
energy transfer. The general strategy for improving dir
quantum/classical approaches to liquid phase VER bey
the simple mean field Ehrenfest ansatz therefore demand
increase of correlation between subsystems, either within
TDSCF approximation or starting from more rigorous m
ticonfiguration~MC! treatments. Apart from making a dis
tinction between single-configuration and MC-TDSCF a
proaches, increase of correlation may be achieved eithe
introducing ‘‘classical’’ features, i.e., stochastic ‘‘quantu
jumps,’’ into the quantum time evolution of the system or
introducing approximate quantum~semiclassical! effects into
the evolution of the bath degrees of freedom. From a dif
ent perspective, the quantum/classical Langevin equation
rived in this paper may serve as a starting point for a s
im
er

y

-

.

l

ev
.
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chastic Hamiltonian approach to the problem at hand. W
along these lines is currently in progress in our laborator
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